9a587c50cb05642aeda4bbcdbf2fbe4f1e4c968b
[policy/parent.git] / docs / architecture / architecture.rst
1 .. This work is licensed under a
2 .. Creative Commons Attribution 4.0 International License.
3 .. http://creativecommons.org/licenses/by/4.0
4
5 .. _architecture-label:
6
7 Policy Framework Architecture
8 #############################
9
10 Abstract
11
12 This document describes the ONAP Policy Framework. It lays out the architecture of the framework and shows the APIs
13 provided to other components that interwork with the framework. It describes the implementation of the framework,
14 mapping out the components, software structure, and execution ecosystem of the framework.
15
16 .. contents::
17     :depth: 6
18
19 1. Overview
20 ===========
21
22 The ONAP Policy Framework is a comprehensive policy design, deployment, and execution environment. The Policy Framework
23 is the decision making component in `an ONAP system
24 <https://www.onap.org/wp-content/uploads/sites/20/2018/11/ONAP_CaseSolution_Architecture_112918FNL.pdf>`__.
25 It allows you to specify, deploy, and execute the governance of the features and functions in your ONAP system, be they
26 closed loop, orchestration, or more traditional open loop use case implementations. The Policy Framework is the
27 component that is the source of truth for all policy decisions.
28
29 One of the most important goals of the Policy Framework is to support Policy Driven Operational Management during the
30 execution of ONAP control loops at run time. In addition, use case implementations such as orchestration and control
31 benefit from the ONAP policy Framework because they can use the capabilities of the framework to manage and execute
32 their policies rather than embedding the decision making in their applications.
33
34 The Policy Framework is deployment agnostic, it manages Policy Execution (in PDPs) and Enforcement (in PEPs) regardless
35 of how the PDPs and PEPs are deployed. This allows policy execution and enforcement can be deployed in a manner that
36 meets the performance requirements of a given application or use case. In one deployment, policy execution could be
37 deployed in a separate executing entity in a Docker container. In another, policy execution could be co-deployed with
38 an application to increase performance. An example of co-deployment is the Drools PDP Control Loop image, which is a
39 Docker image that combines the ONAP Drools use case application and dependencies with the Drools PDP engine.
40
41 The ONAP Policy Framework architecture separates policies from the platform that is supporting them. The framework
42 supports development, deployment, and execution of any type of policy in ONAP. The Policy Framework is metadata (model)
43 driven so that policy development, deployment, and execution is as flexible as possible and can support modern rapid
44 development ways of working such as DevOps. A metadata driven approach also allows the amount of programmed support
45 required for policies to be reduced or ideally eliminated.
46
47 We have identified five capabilities as being essential for the framework:
48
49 1. Most obviously, the framework must be capable of being triggered by an event or invoked, and making decisions at run
50    time.
51
52 2. It must be deployment agnostic; capable of managing policies for various Policy Decision Points (PDPs) or policy
53    engines.
54
55 3. It must be metadata driven, allowing policies to be deployed, modified, upgraded, and removed as the system executes.
56
57 4. It must provide a flexible model driven policy design approach for policy type programming and specification of
58    policies.
59
60 5. It must be extensible, allowing straightforward integration of new PDPs, policy formats, and policy development
61    environments.
62
63 Another important aim of the architecture of a model driven policy framework is that it enables much more flexible
64 policy specification. The ONAP Policy Framework complies with the `TOSCA
65 <http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-Profile-YAML-v1.1.pdf>`__ modelling
66 approach for policies, see the :ref:`TOSCA Policy Primer <tosca-label>` for more information on how policies are modeled
67 in TOSCA.
68
69 1. A Policy Type is a general implementation of a policy for a feature. For example, a Policy Type could be written to
70    manage Service Level Agreements for VPNs. The Policy Type is designed by a domain expert, who specifies the
71    parameters, triggers, and actions that the Policy Type will have. The implementation (the logic, rules, and tasks of
72    the Policy Type) is implemented by a skilled policy developer in consultation with domain experts.
73
74    a. For example, the VPN Policy Type is used to create VPN policies for a bank network, a car dealership network, or a
75       university with many campuses.
76
77    b. In ONAP, specific ONAP Policy Types are used to create specific policies that drive the ONAP Platform and
78       Components.
79
80 2. A Policy is created by configuring a Policy Type with parameters. For example, the SLA values in the car dealership
81    VPN policy for a particular dealership are configured with values appropriate for the expected level of activity in
82    that dealership.
83
84 For more detailed information on designing Policy Types and developing an implementation for that policy type, see
85 :ref:`Policy Design and Development <design-label>`.
86
87 The ONAP Policy Framework for building, configuring and deploying PDPs is extendable. It allows the use of ONAP PDPs as
88 is, the extension of ONAP PDPs, and lastly provides the capability for users to create and deploy their own PDPs. The
89 ONAP Policy Framework provides distributed policy management for **all** policies in ONAP at run time. Not only does
90 this provide unified policy access and version control, it provides life cycle control for policies and allows detection
91 of conflicts across all policies running in an ONAP installation.
92
93 2. Architecture
94 ===============
95
96 The diagram below shows the architecture of the ONAP Policy Framework at its highest level.
97
98 .. image:: images/PFHighestLevel.svg
99
100 The *PolicyDevelopment* component implements the functionality for development of policy types and policies.
101 *PolicyAdministration* is responsible for the deployment life cycle of policies as well as interworking with the
102 mechanisms required to orchestrate the nodes and containers on which policies run. *PolicyAdministration* is also
103 responsible for the administration of policies at run time; ensuring that policies are available to users, that policies
104 are executing correctly, and that the state and status of policies is monitored. *PolicyExecution* is the set of PDPs
105 running in the ONAP system and is responsible for making policy decisions and for managing the administrative state of
106 the PDPs as directed by \ *PolicyAdministration.*
107
108 *PolicyDevelopment* creates policy artifacts and supporting information in the policy database. \ *PolicyAdministration*
109 reads those artifacts and the supporting information from the policy database whilst deploying policy artifacts. Once
110 the policy artifacts are deployed, *PolicyAdministration* handles the run-time management of the PDPs on which the
111 policies are running. *PolicyDevelopment* interacts with ONAP design time components, and has no programmatic interface
112 with *PolicyAdministration*, *PolicyExecution* or any other run-time ONAP components.
113
114 The diagram below shows a more detailed view of the architecture, as inspired by
115 `RFC-2753 <https://tools.ietf.org/html/rfc2753>`__ and `RFC-3198 <https://tools.ietf.org/html/rfc3198>`__.
116
117 .. image:: images/PFDesignAndAdmin.svg
118
119 *PolicyDevelopment* provides a `CRUD <https://en.wikipedia.org/wiki/Create,_read,_update_and_delete>`__ API for policy
120 types and policies. The policy types and policy artifacts and their metadata (Information about policies, policy types,
121 and their interrelations) are stored in the *PolicyDB*. The *PolicyDevGUI*, PolicyDistribution, and other applications
122 such as *CLAMP* can use the *PolicyDevelopment* API to create, update, and delete policy types and policies.
123
124 *PolicyAdministration* has two important functions:
125
126 - Management of the life cycle of PDPs in an ONAP installation. PDPs register with *PolicyAdministration* when they come
127   up. *PolicyAdministration* handles the allocation of PDPs to a PDP Groups and PDP Subgroups, so that they can be
128   managed as microservices in Kubernetes.
129
130 - Management of the deployment of policies to PDPs in an ONAP installation. *PolicyAdministration* gives each PDP group
131   a set of domain policies to execute.
132
133 *PolicyAdministration* handles PDPs and policy allocation to PDPs using asynchronous messaging over DMaaP. It provides
134 three APIs:
135
136 - a CRUD API for policy groups and subgroups
137
138 - an API that allows the allocation of policies PDP groups and subgroups to be controlled
139
140 - an API allows policy execution to be managed, showing the status of policy execution on PDP Groups, subgroups, and
141   individual PDPs as well as the life cycle state of PDPs
142
143 *PolicyExecution* is the set of running PDPs that are executing policies, logically partitioned into PDP groups and
144 subgroups.
145
146 .. image:: images/PolicyExecution.svg
147
148 The figure above shows how *PolicyExecution* looks at run time with PDPs running in Kubernetes. A *PDPGroup* is a purely
149 logical construct that collects all the PDPs that are running policies for a particular domain together. A *PDPSubGroup*
150 is a group of PDPs of the same type that are running the same policies. *A PDPSubGroup* is deployed as a Kubernetes
151 `Deployment <https://kubernetes.io/docs/concepts/workloads/controllers/deployment/>`__. PDPs are defined as Kubernetes
152 `Pods <https://kubernetes.io/docs/concepts/workloads/pods/pod/>`__. At run time,  the actual number of PDPs in each
153 *PDPSubGroup* is specified in the configuration of the *Deployment* of that *PDPSubGroup* in Kubernetes. This
154 structuring of PDPs is required because, in order to simplify deployment and scaling of PDPs in Kubernetes, we gather
155 all the PDPs of the same type that are running the same policies together for deployment.
156
157 For example, assume we have policies for the SON (Self Organizing Network) and ACPE (Advanced Customer Premises Service)
158 domains. For SON,we have XACML, Drools, and APEX policies, and for ACPE we have XACML and Drools policies. The table
159 below shows the resulting \ *PDPGroup*, *PDPSubGroup*, and PDP allocations:
160
161 ============= ================ ========================= ======================================== ================
162 **PDP Group** **PDP Subgroup** **Kubernetes Deployment** **Kubernetes Deployment Strategy**       **PDPs in Pods**
163 ============= ================ ========================= ======================================== ================
164 SON           SON-XACML        SON-XACML-Dep             Always 2, be geo redundant               2 PDP-X
165 \             SON-Drools       SON-Drools-Dep            At Least 4, scale up on 70% load,        >= 4 PDP-D
166                                                          scale down on 40% load, be geo-redundant
167 \             SON-APEX         SON-APEX-Dep              At Least 3, scale up on 70% load, scale  >= 3 PDP-A
168                                                          down on 40% load, be geo-redundant
169 ACPE          ACPE-XACML       ACPE-XACML-Dep            Always 2                                 2 PDP-X
170 \             ACPE-Drools      ACPE-Drools-Dep           At Least 2, scale up on 80% load, scale  >=2 PDP-D
171                                                          down on 50% load
172 ============= ================ ========================= ======================================== ================
173
174 For more details on *PolicyAdministration* APIs and management of *PDPGroup* and *PDPSubGroup*, see the documentation
175 for :ref:`Policy Administration Point (PAP) Architecture <pap-label>`.
176
177 2.1 Policy Framework Object Model
178 ---------------------------------
179
180 This section describes the structure of and relations between the main concepts in the Policy Framework. This model is
181 implemented as a common model and is used by *PolicyDevelopment*, *PolicyDeployment,* and *PolicyExecution.*
182
183 .. image:: images/ClassStructure.svg
184
185 The UML class diagram above shows the portion of the Policy Framework Object Model that applies to *PolicyDeployment*
186 and *PolicyExecution.*
187
188 .. image:: images/DesignTimeComponents.svg
189
190 The UML class diagram above shows the portion of the Policy Framework Object Model that applies to *PolicyDevelopment*
191 and *PolicyDeployment.*
192
193 2.2 Policy Design Architecture
194 ------------------------------
195
196 This section describes the architecture of the model driven system used to develop policy types and to create concrete
197 policies using policy types. The output of Policy Design is deployment-ready artifacts and Policy metadata in the Policy
198 Framework database.
199
200 Policies that are expressed via natural language or a model require some development work ahead of time for them to be
201 translated into concrete runtime policies. Some Policy Domains will be set up and available in the platform during
202 startup such as Control Loop Operational Policy Models, OOF placement Models, DCAE microservice models. Policy type
203 implementation development is done by an experienced developer.
204
205 2.2.1 Policy Type Design
206 ^^^^^^^^^^^^^^^^^^^^^^^^
207
208 Policy Type Design is the task of creating policy types that capture the generic and vendor independent aspects of a
209 policy for a particular domain use case. The policy type implementation specifies the model information, rules, and
210 tasks that a policy type requires to generate concrete policies.
211
212 All policy types must implement the ONAP Policy Framework *PolicyType* interface. This interface allows
213 *PolicyDevelopment* to manage policy types and to generate policies from these policy types in a uniform way regardless
214 of the domain that the policy type is addressing or the PDP technology that will execute the policy. The interface is
215 used by *PolicyDevelopment* to determine the PDP technology of the policy type, the structure, type, and definition of
216 the model information that must be supplied to the policy type to generate a concrete policy.
217
218 A *PolicyTypeImpl* is developed for a certain type of PDP (for example XACML oriented for decision policies or Drools
219 rules oriented for ECA policies). The design environment and tool chain for a policy type is specific for the type of
220 policy being designed.
221
222 The *PolicyTypeImpl*  implementation (or raw policy) is the specification of the specific rules or tasks, the flow of
223 the policy, its internal states and data structures and other relevant information. A *PolicyTypeImpl* is specific to a
224 PDP technology, that is XACML, Drools, or APEX. *A PolicyTypeImpl* can be specific to a particular policy type, it can
225 be more general, providing the implementation of a class of policy types, or the same policy type may have many
226 implementations.
227
228 *PolicyDevelopment* provides the RESTful :ref:`Policy Design API <design-label>` which allows other components to query
229 policy types and policy type implementations, to determine the model information, rules, or tasks that they require, to
230 specialize policy flow, and to generate policies from policy types. This API is used by the ONAP Policy Framework and
231 other components such as \ *PolicyDistribution* to create policies from policy types.
232
233 Consider a policy type created for managing faults on vCPE equipment in a vendor independent way. The policy type
234 captures the generic logic required to manage the faults and specifies the vendor specific information that must be
235 supplied to the type for specific vendor vCPE VFs. The actual  vCPE policy that is used for managing particular vCPE
236 equipment is created by setting the parameters specified in the policy type together with the specific modeled
237 information, rules and tasks in the policy type implementation for that vendor model of vCPE.
238
239 2.2.1.1 Generating Policy Types
240 """""""""""""""""""""""""""""""
241
242 It is possible to generate policy types using MDD (Model Driven Development) techniques. Policy types are expressed
243 using a DSL (Domain Specific Language) or a policy specification environment for a particular application domain. For
244 example, policy types for specifying SLAs could be expressed in a SLA DSL and policy types for managing SON features
245 could be generated from a visual SON management tool. The ONAP Policy framework provides an API that allows tool chains
246 to create policy types. SDC uses this approach for generating Policy Types in the Policy Framework, see the
247 :ref:`Policy Design and Development <design-label>` page.
248
249 The SDC GUI supports several types of policies that can be captured at design time. DCAE micro service configuration
250 policies can be onboarded via the DCAE-DS (DCAE Design Studio).
251
252
253 .. image:: images/PolicyTypeDesign.svg
254
255 The GUI implementation in another ONAP component such as SDC DCAE-DS uses the *API_User* API to create and edit ONAP
256 policy types.
257
258 2.2.1.2 Programming Policy Type Implementations
259 """""""""""""""""""""""""""""""""""""""""""""""
260
261 For skilled developers, the most straightforward way to create a policy type is to program it. Programming a policy type
262 might simply mean creating and editing text files, thus manually creating the TOSCA Policy Type YAML file and the policy
263 type implementation for the policy type.
264
265 A more formal approach is preferred. For policy type implementations, programmers use a specific Eclipse project type
266 for developing each type of implementation, a Policy Type Implementation SDK. The project is under source control in
267 git. This Eclipse project is structured correctly for creating implementations for a specific type of PDP. It includes
268 the correct POM files for generating the policy type implementation and has editors and perspectives that aid
269 programmers in their work
270
271 2.2.2 Policy Design
272 ^^^^^^^^^^^^^^^^^^^
273
274 The *PolicyCreation* function of *PolicyDevelopment* creates policies from a policy type.  The information expressed
275 during policy type design is used to parameterize a policy type to create an executable policy. A service designer
276 and/or operations team can use tooling that reads the TOSCA Policy Type specifications to express and capture a policy
277 at its highest abstraction level. Alternatively, the parameter for the policy can be expressed in a raw JSON or YAML
278 file and posted over the policy design API described on the :ref:`Policy Design and Development <design-label>` page.
279
280 A number of mechanisms for policy creation are supported in ONAP. The process in *PolicyDevelopment* for creating a
281 policy is the same for all mechanisms. The most general mechanism for creating a policy is using the RESTful
282 *Policy Design API*, which provides a full interface to the policy creation support of *PolicyDevelopment*. This API may
283 be exercised directly using utilities such as *curl*. *PolicyDevelopment* provides a command line tool that is a loose
284 wrapper around the API. It also provides a general purpose Policy GUI in the ONAP Portal for policy creation, which
285 again is a general purpose wrapper around the policy creation API. The Policy GUI can interpret any TOSCA Model that has
286 been loaded into it and flexibly presents a GUI for a user to create policies from. The development of these mechanisms
287 will be phased over a number of ONAP releases.
288
289 A number of ONAP components use policy in manners which are specific to their particular needs. The manner in which the
290 policy creation process is triggered and the way in which information required to create a policy is specified and
291 accessed is specialized for these ONAP components.
292
293 The following subsections outline the mechanisms for policy creation and modification supported by the ONAP Policy
294 Framework.
295
296 2.2.2.1 Policy Design in the ONAP Policy Framework
297 """"""""""""""""""""""""""""""""""""""""""""""""""
298
299 Policy creation in *PolicyDevelopment* follows the general sequence shown in the sequence diagram below. An *API_USER*
300 is any component that wants to create a policy from a policy type. *PolicyDevelopment* supplies a REST interface that
301 exposes the API and also provides a command line tool and general purpose client that wraps the API.
302
303 .. image:: images/PolicyDesign.svg
304
305 An *API_User* first gets a reference to and the metadata for the Policy type for the policy they want to work on from
306 *PolicyDevelopment*. *PolicyDevelopment* reads the metadata and artifact for the policy type from the database. The
307 *API_User* then asks for a reference and the metadata for the policy. *PolicyDevelopment* looks up the policy in the
308 database. If the policy already exists, *PolicyDevelopment* reads the artifact and returns the reference of the existing
309 policy to the *API_User* with the metadata for the existing policy. If the policy does not exist, *PolicyDevelopment*
310 creates and new reference and metadata and returns that to the *API_User*.
311
312 The *API_User* may now proceed with a policy specification session, where the parameters are set for the policy using
313 the policy type specification. Once the *API_User* is happy that the policy is completely and correctly specified, it
314 requests *PolicyDevelopment* to create the policy. *PolicyDevelopment* creates the policy, stores the created policy
315 artifact and its metadata in the database.
316
317 2.2.2.2 Model Driven VF (Virtual Function) Policy Design via VNF SDK Packaging
318 """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
319
320 VF vendors express policies such as SLA, Licenses, hardware placement, run-time metric suggestions, etc. These details
321 are captured within the VNF SDK and uploaded into the SDC Catalog. The `SDC Distribution APIs
322 <https://wiki.onap.org/display/DW/SDC+Distribution+client+AID>`__ are used to interact with SDC. For example, SLA and
323 placement policies may be captured via TOSCA specification. License policies can be captured via TOSCA or an XACML
324 specification. Run-time metric vendor recommendations can be captured via the VES Standard specification.
325
326 The sequence diagram below is a high level view of SDC-triggered concrete policy generation for some arbitrary entity
327 *EntityA*. The parameters to create a policy are read from a TOSCA Policy specification read from a CSAR received from
328 SDC.
329
330 .. image:: images/ModelDrivenPolicyDesign.svg
331
332 *PolicyDesign* uses the *PolicyDistribution* component for managing SDC-triggered  policy creation and update requests.
333 *PolicyDistribution* is an *API_User*, it uses the Policy Design API for policy creation and update. It reads the
334 information it needs to populate the policy type from a TOSCA specification in a CSAR received from SDC and then uses
335 this information to automatically generate a policy.
336
337 Note that SDC provides a wrapper for the SDC API as a Java Client and also provides a TOSCA parser. See the
338 documentation for the `Policy Distribution Component
339 <https://docs.onap.org/en/latest/submodules/policy/distribution.git/docs/index.html>`__.
340
341 In Step 4 above, the \ *PolicyDesign* must download the CSAR file. If the policy is to be composed from the TOSCA
342 definition, it must also parse the TOSCA definition.
343
344 In Step 11 above, the \ *PolicyDesign* must send back/publish status events to SDC such as DOWNLOAD_OK, DOWNLOAD_ERROR,
345 DEPLOY_OK, DEPLOY_ERROR, NOTIFIED.
346
347 2.2.2.3 Scripted Model Driven Policy Design
348 """""""""""""""""""""""""""""""""""""""""""
349
350 Service policies such as optimization and placement policies can be specified as a TOSCA Policy at design time. These
351 policies use a TOSCA Policy Type specification as their schemas. Therefore, scripts can be used to create TOSCA policies
352 using TOSCA Policy Types.
353
354 .. image:: images/ScriptedPolicyDesign.svg
355
356 One straightforward way of generating policies from Policy types is to use directives specified in a script file. The
357 command line utility is an *API_User*. The script reads directives from a file. For each directive, it reads the policy
358 type using the Policy Type API, and uses the parameters of the directive to prepare a TOSCA Policy. It then uses the
359 Policy API to create the policy.
360
361 2.2.3 Policy Design Process
362 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
363
364 All policy types must be certified as being fit for deployment prior to run time deployment. Where design is executed
365 using the SDC application, it is assumed the life cycle being implemented by SDC certifies any policy types that
366 are declared within the ONAP Service CSAR. For other policy types and policy type implementations, the life cycle
367 associated with the applied software development process suffices. Since policy types and their implementations are
368 designed and implemented using software development best practices, they can be utilized and configured for various
369 environments (eg. development, testing, production) as desired.
370
371 2.3 Policy Runtime Architecture
372 -------------------------------
373
374 The Policy Framework Platform components are themselves designed as microservices that are easy to configure and deploy
375 via Docker images and K8S both supporting resiliency and scalability if required. PAPs and PDPs are deployed by the
376 underlying ONAP management infrastructure and are designed to comply with the ONAP interfaces for deploying containers.
377
378 The PAPs keep track of PDPs, support the deployment of PDP groups and the deployment of a *policy set* across those PDP
379 groups. A PAP is stateless in a RESTful sense. Therefore, if there is more than one PAP deployed, it does not matter
380 which PAP a user contacts to handle a request. The PAP uses the database (persistent storage) to keep track of ongoing
381 sessions with clients. Policy management on PDPs is the responsibility of PAPs; management of policy sets or policies by
382 any other manner is not permitted.
383
384 In the ONAP Policy Framework, the interfaces to the PDP are designed to be as streamlined as possible. Because the PDP
385 is the main unit of scalability in the Policy Framework, the framework is designed to allow PDPs in a PDP group to
386 arbitrarily appear and disappear and for policy consistency across all PDPs in a PDP group to be easily maintained.
387 Therefore, PDPs have just two interfaces; an interface that users can use to execute policies and interface to the PAP
388 for administration, life cycle management and monitoring. The PAP is responsible for controlling the state across the
389 PDPs in a PDP group. The PAP interacts with the Policy database and transfers policy sets to PDPs, and may cache the
390 policy sets for PDP groups.
391
392 See also Section 2 of the :ref:`Policy Design and Development <design-label>` page, where the mechanisms for PDP
393 Deployment and Registration with PAP are explained.
394
395 2.3.1 Policy Framework Services
396 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
397
398 The ONAP Policy Framework follows the architectural approach for microservices recommended by the `ONAP Architecture
399 Subcommittee <https://wiki.onap.org/display/DW/Architecture+Subcommittee>`__.
400
401 The ONAP Policy Framework defines `Kubernetes Services
402 <https://kubernetes.io/docs/concepts/services-networking/service/>`__ to manage the life cycle of Policy Framework
403 executable components at runtime. A Kubernetes service allows, among other parameters,  the number of instances (*pods*
404 in Kubernetes terminology) that should be deployed for a particular service to be specified and a common endpoint for
405 that service to be defined. Once the service is started in Kubernetes, Kubernetes ensures that the specified number of
406 instances is always kept running. As requests are received on the common endpoint, they are distributed across the
407 service instances. More complex call distribution and instance deployment strategies may be used; please see the
408 `Kubernetes Services <https://kubernetes.io/docs/concepts/services-networking/service/>`__ documentation for those
409 details.
410
411 If, for example, a service called *policy-pdpd-control-loop* is defined that runs 5 PDP-D instances. The service has the
412 end point *https://policy-pdpd-control-loop.onap/<service-specific-path>*. When the service is started, Kubernetes spins
413 up 5 PDP-Ds. Calls to the end point *https://policy-pdpd-control-loop.onap/<service-specific-path>* are distributed
414 across the 5 PDP-D instances. Note that the *.onap* part of the service endpoint is the namespace being used and is
415 specified for the full ONAP Kubernetes installation.
416
417 The following services will be required for the ONAP Policy Framework:
418
419 ================ ============================== =======================================================================
420 **Service**      **Endpoint**                   **Description**
421 ================ ============================== =======================================================================
422 PAP              https://policy-pap             The PAP service, used for policy administration and deployment. See
423                                                 :ref:`Policy Design and Development <design-label>` for details of the
424                                                 API for this service
425 PDP-X-\ *domain* https://policy-pdpx-\ *domain* A PDP service is defined for each PDP group. A PDP group is identified
426                                                 by the domain on which it operates.
427
428                                                 For example, there could be two PDP-X domains, one for admission
429                                                 policies for ONAP proper and another for admission policies for VNFs of
430                                                 operator *Supacom*. Two PDP-X services are defined:
431
432                                                 | https://policy-pdpx-onap
433                                                 | https://policy-pdpx-\ *supacom*
434 PDP-D-\ *domain* https://policy-pdpd-\ *domain*
435 PDP-A-\ *domain* https://policy-pdpa-\ *domain*
436 ================ ============================== =======================================================================
437
438 There is one and only one PAP service, which handles policy deployment, administration, and monitoring for all policies
439 in all PDPs and PDP groups in the system. There are multiple PDP services, one PDP service for each domain for which
440 there are policies.
441
442 2.3.2 The Policy Framework Information Structure
443 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
444
445 The following diagram captures the relationship between Policy Framework concepts at run time.
446
447 .. image:: images/RuntimeRelationships.svg
448
449 There is a one to one relationship between a PDP SubGroup, a Kubernetes PDP service, and the set of policies assigned to
450 run in the PDP subgroup. Each PDP service runs a single PDP subgroup with multiple PDPs, which executes a specific
451 Policy Set containing a number of policies that have been assigned to that PDP subgroup. Having and maintaining this
452 principle makes policy deployment and administration much more straightforward than it would be if complex relationships
453 between PDP services, PDP subgroups, and policy sets.
454
455 The topology of the PDPs and their policy sets is held in the Policy Framework database and is administered by the PAP service.
456
457 .. image:: images/PolicyDatabase.svg
458
459 The diagram above gives an indicative structure of the run time topology information in the Policy Framework database.
460 Note that the *PDP_SUBGROUP_STATE* and *PDP_STATE* fields hold state information for life cycle management of PDP groups
461 and PDPs.
462
463 2.3.3 Startup, Shutdown and Restart
464 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
465
466 This section describes the interactions between Policy Framework components themselves and with other ONAP components at
467 startup, shutdown and restart.
468
469 2.3.3.1 PAP Startup and Shutdown
470 """"""""""""""""""""""""""""""""
471
472 The sequence diagram below shows the actions of the PAP at startup.
473
474 .. image:: images/PAPStartStop.svg
475
476 The PAP is the run time point of coordination for the ONAP Policy Framework. When it is started, it initializes itself
477 using data from the database. It then waits for periodic PDP status updates and for administration requests.
478
479 PAP shutdown is trivial. On receipt or a shutdown request, the PAP completes or aborts any ongoing operations and shuts
480 down gracefully.
481
482 2.3.3.2 PDP Startup and Shutdown
483 """"""""""""""""""""""""""""""""
484
485 The sequence diagram below shows the actions of the PDP at startup. See also Section 4 of the
486 :ref:`Policy Design and Development <design-label>` page for the API used to implement this sequence.
487
488 .. image:: images/PDPStartStop.svg
489
490 At startup, the PDP initializes itself.  At this point it is in PASSIVE mode. The PDP begins sending periodic Status
491 messages to the PAP. The first Status message initializes the process of loading the correct Policy Set on the PDP in
492 the PAP.
493
494 On receipt or a shutdown request, the PDP completes or aborts any ongoing policy executions and shuts down gracefully.
495
496 2.3.4 Policy Execution
497 ^^^^^^^^^^^^^^^^^^^^^^
498
499 Policy execution is the execution of a policy in a PDP. Policy enforcement occurs in the component that receives a
500 policy decision.
501
502 .. image:: images/PolicyExecutionFlow.svg
503
504 Policy execution can be *synchronous* or *asynchronous*. In *synchronous* policy execution, the component requesting a
505 policy decision requests a policy decision and waits for the result. The PDP-X and PDP-A implement synchronous policy
506 execution. In *asynchronous* policy execution, the component that requests a policy decision does not wait for the
507 decision. Indeed, the decision may be passed to another component. The PDP-D and PDP-A implement asynchronous polic
508 execution.
509
510 Policy execution is carried out using the current life cycle mode of operation of the PDP. While the actual
511 implementation of the mode may vary somewhat between PDPs of different types, the principles below hold true for all
512 PDP types:
513
514 ================== =====================================================================================================
515 **Lifecycle Mode** **Behaviour**
516 ================== =====================================================================================================
517 PASSIVE MODE       Policy execution is always rejected irrespective of PDP type.
518 ACTIVE MODE        Policy execution is executed in the live environment by the PDP.
519 SAFE MODE          Policy execution proceeds, but changes to domain state or context are not carried out. The PDP
520                    returns an indication that it is running in SAFE mode together with the action it would have
521                    performed if it was operating in ACTIVE mode. The PDP type and the policy types it is running must
522                    support SAFE mode operation.
523 TEST MODE          Policy execution proceeds and changes to domain and state are carried out in a test or sandbox
524                    environment. The PDP returns an indication it is running in TEST mode together with the action it has
525                    performed on the test environment. The PDP type and the policy types it is running must support TEST
526                    mode operation.
527 ================== =====================================================================================================
528
529 2.3.5 Policy Lifecycle Management
530 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
531
532 Policy lifecycle management manages the deployment and life cycle of policies in PDP groups at run time. Policy sets can
533 be deployed at run time without restarting PDPs or stopping policy execution. PDPs preserve state for minor/patch
534 version upgrades and rollbacks.
535
536 2.3.5.1 Load/Update Policies on PDP
537 """""""""""""""""""""""""""""""""""
538
539 The sequence diagram below shows how policies are loaded or updated on a PDP.
540
541 .. image:: images/DownloadPoliciesToPDP.svg
542
543 This sequence can be initiated in two ways; from the PDP or from a user action.
544
545 1. A PDP sends regular status update messages to the PAP. If this message indicates that the PDP has no policies or
546    outdated policies loaded, then this sequence is initiated
547
548 2. A user may explicitly trigger this sequence to load policies on a PDP
549
550 The PAP controls the entire process. The PAP reads the current PDP metadata and the required policy and policy set
551 artifacts from the database. It then builds the policy set for the PDP. Once the policies are ready, the PAP sets the
552 mode of the PDP to PASSIVE. The Policy Set is transparently passed to the PDP by the PAP. The PDP loads all the policies
553 in the policy set including any models, rules, tasks, or flows in the policy set in the policy implementations.
554
555 Once the Policy Set is loaded, the PAP orders the PDP to enter the life cycle mode that has been specified for it
556 (ACTIVE/SAFE/TEST). The PDP begins to execute policies in the specified mode (see section 2.3.4).
557
558 .. _policy-rollout:
559
560 2.3.5.2 Policy Rollout
561 """"""""""""""""""""""
562
563 A policy set steps through a number of life cycle modes when it is rolled out.
564
565 .. image:: images/PolicyRollout.svg
566
567 The user defines the set of policies for a PDP group. It is deployed to a PDP group and is initially in PASSIVE mode.
568 The user sets the PDP Group into TEST mode. The policies are run in a test or sandboxed environment for a period of
569 time. The test results are passed back to the user. The user may revert the policy set to PASSIVE mode a number of times
570 and upgrade the policy set during test operation.
571
572 When the user is satisfied with policy set execution and when quality criteria have been reached for the policy set, the
573 PDP group is set to run in SAFE mode. In this mode, the policies run on the target environment but do not actually
574 exercise any actions or change any context in the target environment. Again, as in TEST mode, the operator may decide to
575 revert back to TEST mode or even PASSIVE mode if issues arise with a policy set.
576
577 Finally, when the user is satisfied with policy set execution and when quality criteria have been reached, the PDP group
578 is set into ACTIVE state and the policy set executes on the target environment. The results of target operation are
579 reported. The PDP group can be reverted to SAFE, TEST, or even PASSIVE mode at any time if problems arise.
580
581 2.3.5.3 Policy Upgrade and Rollback
582 """""""""""""""""""""""""""""""""""
583
584 There are a number of approaches for managing policy upgrade and rollback.
585
586 The most straightforward approach is to use the approach described in section :ref:`policy-rollout` for upgrading and
587 rolling back policy sets. In order to upgrade a policy set, one follows the process in :ref:`policy-rollout` with the
588 new policy set version. For rollback, one follows the process in :ref:`policy-rollout` with the older policy set, most
589 probably setting the old policy set into ACTIVE mode immediately. The advantage of this approach is that the approach is
590 straightforward. The obvious disadvantage is that the PDP group is not executing on the target environment while the new
591 policy set is in PASSIVE, TEST, and SAFE mode.
592
593 A second manner to tackle upgrade and rollback is to use a spare-wheel approach. An special upgrade PDP group service is
594 set up as a K8S service in parallel with the active one during the upgrade procedure. The spare wheel service is used to
595 execute the process described in :ref:`policy-rollout`. When the time comes to activate the policy set, the references
596 for the active and spare wheel services are simply swapped. The advantage of this approach is that the down time during
597 upgrade is minimized, the spare wheel PDP group can be abandoned at any time without affecting the in service PDP group,
598 and the upgrade can be rolled back easily for a period simply by preserving the old service for a time. The disadvantage
599 is that this approach is more complex and uses more resources than the first approach.
600
601 A third approach is to have two policy sets running in each PDP, an active set and a standby set. However such an
602 approach would increase the complexity of implementation in PDPs significantly.
603
604 2.3.6 Policy Monitoring
605 ^^^^^^^^^^^^^^^^^^^^^^^
606
607 PDPs provide a periodic report of their status to the PAP. All PDPs report using a standard reporting format that is
608 extended to provide information for specific PDP types. PDPs provide at least the information below:
609
610 ===================== ===============================================================================
611 **Field**             **Description**
612 ===================== ===============================================================================
613 State                 Lifecycle State (PASSIVE/TEST/SAFE/ACTIVE)
614 Timestamp             Time the report record was generated
615 InvocationCount       The number of execution invocations the PDP has processed since the last report
616 LastInvocationTime    The time taken to process the last execution invocation
617 AverageInvocationTime The average time taken to process an invocation since the last report
618 StartTime             The start time of the PDP
619 UpTime                The length of time the PDP has been executing
620 RealTimeInfo          Real time information on running policies.
621 ===================== ===============================================================================
622
623 2.3.7 PEP Registration and Enforcement Guidelines
624 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
625
626 In ONAP there are several applications outside the Policy Framework that enforce policy decisions based on models
627 provided to the Policy Framework. These applications are considered Policy Enforcement Engines (PEP) and roles will be
628 provided to those applications using AAF/CADI to ensure only those applications can make calls to the Policy Decision
629 APIs. Some example PEPs are: DCAE, OOF, and SDNC.
630
631 See Section 3.4 of the :ref:`Policy Design and Development <design-label>`
632 for more information on the Decision APIs.
633
634 3. APIs Provided by the Policy Framework
635 ========================================
636
637 See the :ref:`Policy Design and Development <design-label>` page.
638
639 4. Terminology
640 ==============
641
642 ================================= ==================================================================================
643 PAP (Policy Administration Point) A component that administers and manages policies
644 ================================= ==================================================================================
645 PDP (Policy Deployment Point)     A component that executes a policy artifact (One or many?)
646 PDP_<>                            A specific type of PDP
647 PDP Group                         A group of PDPs that execute the same set of policies
648 Policy Development                The development environment for policies
649 Policy Type                       A generic prototype definition of a type of policy in TOSCA, see the
650                                   :ref:`TOSCA Policy Primer <tosca-label>`
651 Policy                            An executable policy defined in TOSCA and created using a Policy Type, see  the
652                                   :ref:`TOSCA Policy Primer <tosca-label>`
653 Policy Set                        A set of policies that are deployed on a PDP group. One and only one Policy Set is
654                                   deployed on a PDP group
655 ================================= ==================================================================================
656
657
658 End of Document