Add standardized helm chart for log
[oom.git] / docs / oom_user_guide.rst
1 .. This work is licensed under a Creative Commons Attribution 4.0 International License.
2 .. http://creativecommons.org/licenses/by/4.0
3 .. Copyright 2018 Amdocs, Bell Canada
4
5 .. Links
6 .. _Curated applications for Kubernetes: https://github.com/kubernetes/charts
7 .. _Services: https://kubernetes.io/docs/concepts/services-networking/service/
8 .. _ReplicaSet: https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
9 .. _StatefulSet: https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
10 .. _Helm Documentation: https://docs.helm.sh/helm/
11 .. _Helm: https://docs.helm.sh/
12 .. _Kubernetes: https://Kubernetes.io/
13
14 .. _user-guide-label:
15
16 OOM User Guide
17 ##############
18
19 The ONAP Operations Manager (OOM) provide the ability to manage the entire
20 life-cycle of an ONAP installation, from the initial deployment to final
21 decommissioning. This guide provides instructions for users of ONAP to
22 use the Kubernetes_/Helm_ system as a complete ONAP management system.
23
24 This guide provides many examples of Helm command line operations.  For a
25 complete description of these commands please refer to the `Helm
26 Documentation`_.
27
28 .. figure:: oomLogoV2-medium.png
29    :align: right
30
31 The following sections describe the life-cycle operations:
32
33 - Deploy_ - with built-in component dependency management
34 - Configure_ - unified configuration across all ONAP components
35 - Monitor_ - real-time health monitoring feeding to a Consul UI and Kubernetes
36 - Heal_- failed ONAP containers are recreated automatically
37 - Scale_ - cluster ONAP services to enable seamless scaling
38 - Upgrade_ - change-out containers or configuration with little or no service impact
39 - Delete_ - cleanup individual containers or entire deployments
40
41 .. figure:: oomLogoV2-Deploy.png
42    :align: right
43
44 Deploy
45 ======
46
47 The OOM team with assistance from the ONAP project teams, have built a
48 comprehensive set of Helm charts, yaml files very similar to TOSCA files, that
49 describe the composition of each of the ONAP components and the relationship
50 within and between components. Using this model Helm is able to deploy all of
51 ONAP this simple command::
52
53   > helm install osn/onap
54
55 .. note::
56   The osn repo is not currently available so creation of a local repository is
57   required.
58
59 Helm is able to use charts served up from a repository and comes setup with a
60 default CNCF provided `Curated applications for Kubernetes`_ repository called
61 stable which should be removed to avoid confusion::
62
63   > helm repo remove stable
64
65 .. To setup the Open Source Networking Nexus repository for helm enter::
66 ..  > helm repo add osn 'https://nexus3.onap.org:10001/helm/helm-repo-in-nexus/master/'
67
68 To prepare your system for an installation of ONAP, you'll need to::
69
70   > git clone http://gerrit.onap.org/r/oom
71   > cd kubernetes
72
73 Then build your local Helm repository::
74
75   > make all
76
77 To setup a local Helm server to server up the ONAP charts::
78
79   > helm serve &
80
81 Note the port number that is listed and use it in the Helm repo add as follows::
82
83   > helm repo add local http://127.0.0.1:8879
84
85 To get a list of all of the available Helm chart repositories::
86
87   > helm repo list
88   NAME   URL
89   local  http://127.0.0.1:8879
90
91 The Helm search command reads through all of the repositories configured on the
92 system, and looks for matches::
93
94   > helm search -l
95   NAME                    VERSION    DESCRIPTION
96   local/appc              2.0.0      Application Controller
97   local/clamp             2.0.0      ONAP Clamp
98   local/common            2.0.0      Common templates for inclusion in other charts
99   local/onap              2.0.0      Open Network Automation Platform (ONAP)
100   local/robot             2.0.0      A helm Chart for kubernetes-ONAP Robot
101   local/so                2.0.0      ONAP Service Orchestrator
102
103 In any case, setup of the Helm repository is a one time activity.
104
105 Once the repo is setup, installation of ONAP can be done with a single command::
106
107   > helm install local/onap -name development
108
109 This will install ONAP from a local repository in a 'development' Helm release.
110 As described below, to override the default configuration values provided by
111 OOM, an environment file can be provided on the command line as follows::
112
113   > helm install local/onap -name development -f onap-development.yaml
114
115 To get a summary of the status of all of the pods (containers) running in your
116 deployment::
117
118   > kubectl get pods --all-namespaces -o=wide
119
120 .. note::
121   The Kubernetes namespace concept allows for multiple instances of a component
122   (such as all of ONAP) to co-exist with other components in the same
123   Kubernetes cluster by isolating them entirely.  Namespaces share only the
124   hosts that form the cluster thus providing isolation between production and
125   development systems as an example.  The OOM deployment of ONAP in Beijing is
126   now done within a single Kubernetes namespace where in Amsterdam a namespace
127   was created for each of the ONAP components.
128
129 .. note::
130   The Helm `-name` option refers to a release name and not a Kubernetes namespace.
131
132
133 To install a specific version of a single ONAP component (`so` in this example)
134 with the given name enter::
135
136   > helm install onap/so --version 2.0.1 -n so
137
138 To display details of a specific resource or group of resources type::
139
140   > kubectl describe pod so-1071802958-6twbl
141
142 where the pod identifier refers to the auto-generated pod identifier.
143
144 .. figure:: oomLogoV2-Configure.png
145    :align: right
146
147 Configure
148 =========
149
150 Each project within ONAP has its own configuration data generally consisting
151 of: environment variables, configuration files, and database initial values.
152 Many technologies are used across the projects resulting in significant
153 operational complexity and an inability to apply global parameters across the
154 entire ONAP deployment. OOM solves this problem by introducing a common
155 configuration technology, Helm charts, that provide a hierarchical
156 configuration configuration with the ability to override values with higher
157 level charts or command line options.
158
159 The structure of the configuration of ONAP is shown in the following diagram.
160 Note that key/value pairs of a parent will always take precedence over those
161 of a child. Also note that values set on the command line have the highest
162 precedence of all.
163
164 .. graphviz::
165
166    digraph config {
167       {
168          node     [shape=folder]
169          oValues  [label="values.yaml"]
170          demo     [label="onap-demo.yaml"]
171          prod     [label="onap-production.yaml"]
172          oReq     [label="requirements.yaml"]
173          soValues [label="values.yaml"]
174          soReq    [label="requirements.yaml"]
175          mdValues [label="values.yaml"]
176       }
177       {
178          oResources  [label="resources"]
179       }
180       onap -> oResources
181       onap -> oValues
182       oResources -> environments
183       oResources -> oReq
184       oReq -> so
185       environments -> demo
186       environments -> prod
187       so -> soValues
188       so -> soReq
189       so -> charts
190       charts -> mariadb
191       mariadb -> mdValues
192
193    }
194
195 The top level onap/values.yaml file contains the values required to be set
196 before deploying ONAP.  Here is the contents of this file:
197
198 .. include:: onap_values.yaml
199    :code: yaml
200
201 One may wish to create a value file that is specific to a given deployment such
202 that it can be differentiated from other deployments.  For example, a
203 onap-development.yaml file may create a minimal environment for development
204 while onap-production.yaml might describe a production deployment that operates
205 independently of the developer version.
206
207 For example, if the production OpenStack instance was different from a
208 developer's instance, the onap-production.yaml file may contain a different
209 value for the vnfDeployment/openstack/oam_network_cidr key as shown below.
210
211 .. code-block:: yaml
212
213   nsPrefix: onap
214   nodePortPrefix: 302
215   apps: consul msb mso message-router sdnc vid robot portal policy appc aai
216   sdc dcaegen2 log cli multicloud clamp vnfsdk aaf kube2msb
217   dataRootDir: /dockerdata-nfs
218
219   # docker repositories
220   repository:
221     onap: nexus3.onap.org:10001
222     oom: oomk8s
223     aai: aaionap
224     filebeat: docker.elastic.co
225
226   image:
227     pullPolicy: Never
228
229   # vnf deployment environment
230   vnfDeployment:
231     openstack:
232       ubuntu_14_image: "Ubuntu_14.04.5_LTS"
233       public_net_id: "e8f51956-00dd-4425-af36-045716781ffc"
234       oam_network_id: "d4769dfb-c9e4-4f72-b3d6-1d18f4ac4ee6"
235       oam_subnet_id: "191f7580-acf6-4c2b-8ec0-ba7d99b3bc4e"
236       oam_network_cidr: "192.168.30.0/24"
237   <...>
238
239
240 To deploy ONAP with this environment file, enter::
241
242   > helm install local/onap -n beijing -f environments/onap-production.yaml
243
244 .. include:: environments_onap_demo.yaml
245    :code: yaml
246
247 When deploying all of ONAP a requirements.yaml file control which and what
248 version of the ONAP components are included.  Here is an excerpt of this
249 file:
250
251 .. code-block:: yaml
252
253   # Referencing a named repo called 'local'.
254   # Can add this repo by running commands like:
255   # > helm serve
256   # > helm repo add local http://127.0.0.1:8879
257   dependencies:
258   <...>
259     - name: so
260       version: ~2.0.0
261       repository: '@local'
262       condition: so.enabled
263   <...>
264
265 The ~ operator in the `so` version value indicates that the latest "2.X.X"
266 version of `so` shall be used thus allowing the chart to allow for minor
267 upgrades that don't impact the so API; hence, version 2.0.1 will be installed
268 in this case.
269
270 The onap/resources/environment/onap-dev.yaml (see the excerpt below) enables
271 for fine grained control on what components are included as part of this
272 deployment. By changing this `so` line to `enabled: false` the `so` component
273 will not be deployed.  If this change is part of an upgrade the existing `so`
274 component will be shut down. Other `so` parameters and even `so` child values
275 can be modified, for example the `so`'s `liveness` probe could be disabled
276 (which is not recommended as this change would disable auto-healing of `so`).
277
278 .. code-block:: yaml
279
280   #################################################################
281   # Global configuration overrides.
282   #
283   # These overrides will affect all helm charts (ie. applications)
284   # that are listed below and are 'enabled'.
285   #################################################################
286   global:
287   <...>
288
289   #################################################################
290   # Enable/disable and configure helm charts (ie. applications)
291   # to customize the ONAP deployment.
292   #################################################################
293   aaf:
294     enabled: false
295   <...>
296   so: # Service Orchestrator
297     enabled: true
298
299     replicaCount: 1
300
301     liveness:
302       # necessary to disable liveness probe when setting breakpoints
303       # in debugger so K8s doesn't restart unresponsive container
304       enabled: true
305
306   <...>
307
308 .. figure:: oomLogoV2-Monitor.png
309    :align: right
310
311 Monitor
312 =======
313
314 All highly available systems include at least one facility to monitor the
315 health of components within the system.  Such health monitors are often used as
316 inputs to distributed coordination systems (such as etcd, zookeeper, or consul)
317 and monitoring systems (such as nagios or zabbix). OOM provides two mechanims
318 to monitor the real-time health of an ONAP deployment:
319
320 - a Consul GUI for a human operator or downstream monitoring systems and
321   Kubernetes liveness probes that enable automatic healing of failed
322   containers, and
323 - a set of liveness probes which feed into the Kubernetes manager which
324   are described in the Heal section.
325
326 Within ONAP Consul is the monitoring system of choice and deployed by OOM in two parts:
327
328 - a three-way, centralized Consul server cluster is deployed as a highly
329   available monitor of all of the ONAP components,and
330 - a number of Consul agents.
331
332 The Consul server provides a user interface that allows a user to graphically
333 view the current health status of all of the ONAP components for which agents
334 have been created - a sample from the ONAP Integration labs follows:
335
336 .. figure:: consulHealth.png
337    :align: center
338
339 To see the real-time health of a deployment go to: http://<kubernetes IP>:30270/ui/
340 where a GUI much like the following will be found:
341
342
343 .. figure:: oomLogoV2-Heal.png
344    :align: right
345
346 Heal
347 ====
348
349 The ONAP deployment is defined by Helm charts as mentioned earlier.  These Helm
350 charts are also used to implement automatic recoverability of ONAP components
351 when individual components fail. Once ONAP is deployed, a "liveness" probe
352 starts checking the health of the components after a specified startup time.
353
354 Should a liveness probe indicate a failed container it will be terminated and a
355 replacement will be started in its place - containers are ephemeral. Should the
356 deployment specification indicate that there are one or more dependencies to
357 this container or component (for example a dependency on a database) the
358 dependency will be satisfied before the replacement container/component is
359 started. This mechanism ensures that, after a failure, all of the ONAP
360 components restart successfully.
361
362 To test healing, the following command can be used to delete a pod::
363
364   > kubectl delete pod [pod name] -n [pod namespace]
365
366 One could then use the following command to monitor the pods and observe the
367 pod being terminated and the service being automatically healed with the
368 creation of a replacement pod::
369
370   > kubectl get pods --all-namespaces -o=wide
371
372 .. figure:: oomLogoV2-Scale.png
373    :align: right
374
375 Scale
376 =====
377
378 Many of the ONAP components are horizontally scalable which allows them to
379 adapt to expected offered load.  During the Beijing release scaling is static,
380 that is during deployment or upgrade a cluster size is defined and this cluster
381 will be maintained even in the presence of faults. The parameter that controls
382 the cluster size of a given component is found in the values.yaml file for that
383 component.  Here is an excerpt that shows this parameter:
384
385 .. code-block:: yaml
386
387   # default number of instances
388   replicaCount: 1
389
390 In order to change the size of a cluster, an operator could use a helm upgrade
391 (described in detail in the next section) as follows::
392
393   > helm upgrade --set replicaCount=3 onap/so/mariadb
394
395 The ONAP components use Kubernetes provided facilities to build clustered,
396 highly available systems including: Services_ with load-balancers, ReplicaSet_,
397 and StatefulSet_.  Some of the open-source projects used by the ONAP components
398 directly support clustered configurations, for example ODL and MariaDB Galera.
399
400 The Kubernetes Services_ abstraction to provide a consistent access point for
401 each of the ONAP components, independent of the pod or container architecture
402 of that component.  For example, SDN-C uses OpenDaylight clustering with a
403 default cluster size of three but uses a Kubernetes service to and change the
404 number of pods in this abstract this cluster from the other ONAP components
405 such that the cluster could change size and this change is isolated from the
406 other ONAP components by the load-balancer implemented in the ODL service
407 abstraction.
408
409 A ReplicaSet_ is a construct that is used to describe the desired state of the
410 cluster.  For example 'replicas: 3' indicates to Kubernetes that a cluster of 3
411 instances is the desired state.  Should one of the members of the cluster fail,
412 a new member will be automatically started to replace it.
413
414 Some of the ONAP components many need a more deterministic deployment; for
415 example to enable intra-cluster communication. For these applications the
416 component can be deployed as a Kubernetes StatefulSet_ which will maintain a
417 persistent identifier for the pods and thus a stable network id for the pods.
418 For example: the pod names might be web-0, web-1, web-{N-1} for N 'web' pods
419 with corresponding DNS entries such that intra service communication is simple
420 even if the pods are physically distributed across multiple nodes. An example
421 of how these capabilities can be used is described in the Running Consul on
422 Kubernetes tutorial.
423
424 .. figure:: oomLogoV2-Upgrade.png
425    :align: right
426
427 Upgrade
428 =======
429
430 Helm has built-in capabilities to enable the upgrade of pods without causing a
431 loss of the service being provided by that pod or pods (if configured as a
432 cluster).  As described in the OOM Developer's Guide, ONAP components provide
433 an abstracted 'service' end point with the pods or containers providing this
434 service hidden from other ONAP components by a load balancer. This capability
435 is used during upgrades to allow a pod with a new image to be added to the
436 service before removing the pod with the old image. This 'make before break'
437 capability ensures minimal downtime.
438
439 Prior to doing an upgrade, determine of the status of the deployed charts::
440
441   > helm list
442   NAME REVISION UPDATED                  STATUS    CHART     NAMESPACE
443   so   1        Mon Feb 5 10:05:22 2018  DEPLOYED  so-2.0.1  default
444
445 When upgrading a cluster a parameter controls the minimum size of the cluster
446 during the upgrade while another parameter controls the maximum number of nodes
447 in the cluster.  For example, SNDC configured as a 3-way ODL cluster might
448 require that during the upgrade no fewer than 2 pods are available at all times
449 to provide service while no more than 5 pods are ever deployed across the two
450 versions at any one time to avoid depleting the cluster of resources. In this
451 scenario, the SDNC cluster would start with 3 old pods then Kubernetes may add
452 a new pod (3 old, 1 new), delete one old (2 old, 1 new), add two new pods (2
453 old, 3 new) and finally delete the 2 old pods (3 new).  During this sequence
454 the constraints of the minimum of two pods and maximum of five would be
455 maintained while providing service the whole time.
456
457 Initiation of an upgrade is triggered by changes in the Helm charts.  For
458 example, if the image specified for one of the pods in the SDNC deployment
459 specification were to change (i.e. point to a new Docker image in the nexus3
460 repository - commonly through the change of a deployment variable), the
461 sequence of events described in the previous paragraph would be initiated.
462
463 For example, to upgrade a container by changing configuration, specifically an
464 environment value::
465
466   > helm upgrade beijing onap/so --version 2.0.1 --set enableDebug=true
467
468 Issuing this command will result in the appropriate container being stopped by
469 Kubernetes and replaced with a new container with the new environment value.
470
471 To upgrade a component to a new version with a new configuration file enter::
472
473   > helm upgrade beijing onap/so --version 2.0.2 -f environments/demo.yaml
474
475 To fetch release history enter::
476
477   > helm history so
478   REVISION UPDATED                  STATUS     CHART     DESCRIPTION
479   1        Mon Feb 5 10:05:22 2018  SUPERSEDED so-2.0.1  Install complete
480   2        Mon Feb 5 10:10:55 2018  DEPLOYED   so-2.0.2  Upgrade complete
481
482 Unfortunately, not all upgrades are successful.  In recognition of this the
483 lineup of pods within an ONAP deployment is tagged such that an administrator
484 may force the ONAP deployment back to the previously tagged configuration or to
485 a specific configuration, say to jump back two steps if an incompatibility
486 between two ONAP components is discovered after the two individual upgrades
487 succeeded.
488
489 This rollback functionality gives the administrator confidence that in the
490 unfortunate circumstance of a failed upgrade the system can be rapidly brought
491 back to a known good state.  This process of rolling upgrades while under
492 service is illustrated in this short YouTube video showing a Zero Downtime
493 Upgrade of a web application while under a 10 million transaction per second
494 load.
495
496 For example, to roll-back back to previous system revision enter::
497
498   > helm rollback so 1
499
500   > helm history so
501   REVISION UPDATED                  STATUS     CHART     DESCRIPTION
502   1        Mon Feb 5 10:05:22 2018  SUPERSEDED so-2.0.1  Install complete
503   2        Mon Feb 5 10:10:55 2018  SUPERSEDED so-2.0.2  Upgrade complete
504   3        Mon Feb 5 10:14:32 2018  DEPLOYED   so-2.0.1  Rollback to 1
505
506 .. note::
507
508   The description field can be overridden to document actions taken or include
509   tracking numbers.
510
511 Many of the ONAP components contain their own databases which are used to
512 record configuration or state information.  The schemas of these databases may
513 change from version to version in such a way that data stored within the
514 database needs to be migrated between versions. If such a migration script is
515 available it can be invoked during the upgrade (or rollback) by Container
516 Lifecycle Hooks. Two such hooks are available, PostStart and PreStop, which
517 containers can access by registering a handler against one or both. Note that
518 it is the responsibility of the ONAP component owners to implement the hook
519 handlers - which could be a shell script or a call to a specific container HTTP
520 endpoint - following the guidelines listed on the Kubernetes site. Lifecycle
521 hooks are not restricted to database migration or even upgrades but can be used
522 anywhere specific operations need to be taken during lifecycle operations.
523
524 OOM uses Helm K8S package manager to deploy ONAP components. Each component is
525 arranged in a packaging format called a chart - a collection of files that
526 describe a set of k8s resources. Helm allows for rolling upgrades of the ONAP
527 component deployed. To upgrade a component Helm release you will need an
528 updated Helm chart. The chart might have modified, deleted or added values,
529 deployment yamls, and more.  To get the release name use::
530
531   > helm ls
532
533 To easily upgrade the release use::
534
535   > helm upgrade [RELEASE] [CHART]
536
537 To roll back to a previous release version use::
538
539   > helm rollback [flags] [RELEASE] [REVISION]
540
541 For example, to upgrade the onap-so helm release to the latest SO container
542 release v1.1.2:
543
544 - Edit so values.yaml which is part of the chart
545 - Change "so: nexus3.onap.org:10001/openecomp/so:v1.1.1" to
546   "so: nexus3.onap.org:10001/openecomp/so:v1.1.2"
547 - From the chart location run::
548
549   > helm upgrade onap-so
550
551 The previous so pod will be terminated and a new so pod with an updated so
552 container will be created.
553
554 .. figure:: oomLogoV2-Delete.png
555    :align: right
556
557 Delete
558 ======
559
560 Existing deployments can be partially or fully removed once they are no longer
561 needed.  To minimize errors it is recommended that before deleting components
562 from a running deployment the operator perform a 'dry-run' to display exactly
563 what will happen with a given command prior to actually deleting anything.  For
564 example::
565
566   > helm delete --dry-run beijing
567
568 will display the outcome of deleting the 'beijing' release from the deployment.
569 To completely delete a release and remove it from the internal store enter::
570
571   > helm delete --purge beijing
572
573 One can also remove individual components from a deployment by changing the
574 ONAP configuration values.  For example, to remove `so` from a running
575 deployment enter::
576
577   > helm upgrade beijing osn/onap --set so.enabled=false
578
579 will remove `so` as the configuration indicates it's no longer part of the
580 deployment. This might be useful if a one wanted to replace just `so` by
581 installing a custom version.