8a7ebfcb253620783f921896ee81e511da563b58
[oom.git] / docs / oom_user_guide.rst
1 .. This work is licensed under a Creative Commons Attribution 4.0
2 .. International License.
3 .. http://creativecommons.org/licenses/by/4.0
4 .. Copyright 2018-2020 Amdocs, Bell Canada, Orange, Samsung
5 .. _oom_user_guide:
6
7 .. Links
8 .. _Curated applications for Kubernetes: https://github.com/kubernetes/charts
9 .. _Services: https://kubernetes.io/docs/concepts/services-networking/service/
10 .. _ReplicaSet: https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
11 .. _StatefulSet: https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
12 .. _Helm Documentation: https://docs.helm.sh/helm/
13 .. _Helm: https://docs.helm.sh/
14 .. _Kubernetes: https://Kubernetes.io/
15 .. _Kubernetes LoadBalancer: https://kubernetes.io/docs/concepts/services-networking/service/#type-loadbalancer
16 .. _user-guide-label:
17
18 OOM User Guide
19 ##############
20
21 The ONAP Operations Manager (OOM) provide the ability to manage the entire
22 life-cycle of an ONAP installation, from the initial deployment to final
23 decommissioning. This guide provides instructions for users of ONAP to
24 use the Kubernetes_/Helm_ system as a complete ONAP management system.
25
26 This guide provides many examples of Helm command line operations.  For a
27 complete description of these commands please refer to the `Helm
28 Documentation`_.
29
30 .. figure:: oomLogoV2-medium.png
31    :align: right
32
33 The following sections describe the life-cycle operations:
34
35 - Deploy_ - with built-in component dependency management
36 - Configure_ - unified configuration across all ONAP components
37 - Monitor_ - real-time health monitoring feeding to a Consul UI and Kubernetes
38 - Heal_- failed ONAP containers are recreated automatically
39 - Scale_ - cluster ONAP services to enable seamless scaling
40 - Upgrade_ - change-out containers or configuration with little or no service
41   impact
42 - Delete_ - cleanup individual containers or entire deployments
43
44 .. figure:: oomLogoV2-Deploy.png
45    :align: right
46
47 Deploy
48 ======
49
50 The OOM team with assistance from the ONAP project teams, have built a
51 comprehensive set of Helm charts, yaml files very similar to TOSCA files, that
52 describe the composition of each of the ONAP components and the relationship
53 within and between components. Using this model Helm is able to deploy all of
54 ONAP with a few simple commands.
55
56 Pre-requisites
57 --------------
58 Your environment must have both the Kubernetes `kubectl` and Helm setup as a
59 one time activity.
60
61 Install Kubectl
62 ~~~~~~~~~~~~~~~
63 Enter the following to install kubectl (on Ubuntu, there are slight differences
64 on other O/Ss), the Kubernetes command line interface used to manage a
65 Kubernetes cluster::
66
67   > curl -LO https://storage.googleapis.com/kubernetes-release/release/v1.8.10/bin/linux/amd64/kubectl
68   > chmod +x ./kubectl
69   > sudo mv ./kubectl /usr/local/bin/kubectl
70   > mkdir ~/.kube
71
72 Paste kubectl config from Rancher (see the :ref:`cloud-setup-guide-label` for
73 alternative Kubernetes environment setups) into the `~/.kube/config` file.
74
75 Verify that the Kubernetes config is correct::
76
77   > kubectl get pods --all-namespaces
78
79 At this point you should see six Kubernetes pods running.
80
81 Install Helm
82 ~~~~~~~~~~~~
83 Helm is used by OOM for package and configuration management. To install Helm,
84 enter the following::
85
86   > wget http://storage.googleapis.com/kubernetes-helm/helm-v2.9.1-linux-amd64.tar.gz
87   > tar -zxvf helm-v2.9.1-linux-amd64.tar.gz
88   > sudo mv linux-amd64/helm /usr/local/bin/helm
89
90 Verify the Helm version with::
91
92   > helm version
93
94 Install the Helm Tiller application and initialize with::
95
96   > helm init
97
98 Install the Helm Repo
99 ---------------------
100 Once kubectl and Helm are setup, one needs to setup a local Helm server to
101 server up the ONAP charts::
102
103   > helm install osn/onap
104
105 .. note::
106   The osn repo is not currently available so creation of a local repository is
107   required.
108
109 Helm is able to use charts served up from a repository and comes setup with a
110 default CNCF provided `Curated applications for Kubernetes`_ repository called
111 stable which should be removed to avoid confusion::
112
113   > helm repo remove stable
114
115 .. To setup the Open Source Networking Nexus repository for helm enter::
116 ..  > helm repo add osn 'https://nexus3.onap.org:10001/helm/helm-repo-in-nexus/master/'
117
118 To prepare your system for an installation of ONAP, you'll need to::
119
120   > git clone -b frankfurt --recurse-submodules -j2 http://gerrit.onap.org/r/oom
121   > cd oom/kubernetes
122
123
124 To setup a local Helm server to server up the ONAP charts::
125
126   > helm init
127   > helm serve &
128
129 Note the port number that is listed and use it in the Helm repo add as
130 follows::
131
132   > helm repo add local http://127.0.0.1:8879
133
134 To get a list of all of the available Helm chart repositories::
135
136   > helm repo list
137   NAME   URL
138   local  http://127.0.0.1:8879
139
140 Then build your local Helm repository::
141
142   > make SKIP_LINT=TRUE all
143
144 The Helm search command reads through all of the repositories configured on the
145 system, and looks for matches::
146
147   > helm search -l
148   NAME                    VERSION    DESCRIPTION
149   local/appc              2.0.0      Application Controller
150   local/clamp             2.0.0      ONAP Clamp
151   local/common            2.0.0      Common templates for inclusion in other charts
152   local/onap              2.0.0      Open Network Automation Platform (ONAP)
153   local/robot             2.0.0      A helm Chart for kubernetes-ONAP Robot
154   local/so                2.0.0      ONAP Service Orchestrator
155
156 In any case, setup of the Helm repository is a one time activity.
157
158 Next, install Helm Plugins required to deploy the ONAP Casablanca release::
159
160   > cp -R helm/plugins/ ~/.helm
161
162 Once the repo is setup, installation of ONAP can be done with a single
163 command::
164
165   > helm deploy development local/onap --namespace onap
166
167 This will install ONAP from a local repository in a 'development' Helm release.
168 As described below, to override the default configuration values provided by
169 OOM, an environment file can be provided on the command line as follows::
170
171   > helm deploy development local/onap --namespace onap -f overrides.yaml
172
173 To get a summary of the status of all of the pods (containers) running in your
174 deployment::
175
176   > kubectl get pods --all-namespaces -o=wide
177
178 .. note::
179   The Kubernetes namespace concept allows for multiple instances of a component
180   (such as all of ONAP) to co-exist with other components in the same
181   Kubernetes cluster by isolating them entirely.  Namespaces share only the
182   hosts that form the cluster thus providing isolation between production and
183   development systems as an example.  The OOM deployment of ONAP in Beijing is
184   now done within a single Kubernetes namespace where in Amsterdam a namespace
185   was created for each of the ONAP components.
186
187 .. note::
188   The Helm `--name` option refers to a release name and not a Kubernetes namespace.
189
190
191 To install a specific version of a single ONAP component (`so` in this example)
192 with the given release name enter::
193
194   > helm deploy so onap/so --version 3.0.1
195
196 To display details of a specific resource or group of resources type::
197
198   > kubectl describe pod so-1071802958-6twbl
199
200 where the pod identifier refers to the auto-generated pod identifier.
201
202 .. figure:: oomLogoV2-Configure.png
203    :align: right
204
205 Configure
206 =========
207
208 Each project within ONAP has its own configuration data generally consisting
209 of: environment variables, configuration files, and database initial values.
210 Many technologies are used across the projects resulting in significant
211 operational complexity and an inability to apply global parameters across the
212 entire ONAP deployment. OOM solves this problem by introducing a common
213 configuration technology, Helm charts, that provide a hierarchical
214 configuration with the ability to override values with higher
215 level charts or command line options.
216
217 The structure of the configuration of ONAP is shown in the following diagram.
218 Note that key/value pairs of a parent will always take precedence over those
219 of a child. Also note that values set on the command line have the highest
220 precedence of all.
221
222 .. graphviz::
223
224    digraph config {
225       {
226          node     [shape=folder]
227          oValues  [label="values.yaml"]
228          demo     [label="onap-demo.yaml"]
229          prod     [label="onap-production.yaml"]
230          oReq     [label="requirements.yaml"]
231          soValues [label="values.yaml"]
232          soReq    [label="requirements.yaml"]
233          mdValues [label="values.yaml"]
234       }
235       {
236          oResources  [label="resources"]
237       }
238       onap -> oResources
239       onap -> oValues
240       oResources -> environments
241       oResources -> oReq
242       oReq -> so
243       environments -> demo
244       environments -> prod
245       so -> soValues
246       so -> soReq
247       so -> charts
248       charts -> mariadb
249       mariadb -> mdValues
250
251    }
252
253 The top level onap/values.yaml file contains the values required to be set
254 before deploying ONAP.  Here is the contents of this file:
255
256 .. include:: ../kubernetes/onap/values.yaml
257    :code: yaml
258
259 One may wish to create a value file that is specific to a given deployment such
260 that it can be differentiated from other deployments.  For example, a
261 onap-development.yaml file may create a minimal environment for development
262 while onap-production.yaml might describe a production deployment that operates
263 independently of the developer version.
264
265 For example, if the production OpenStack instance was different from a
266 developer's instance, the onap-production.yaml file may contain a different
267 value for the vnfDeployment/openstack/oam_network_cidr key as shown below.
268
269 .. code-block:: yaml
270
271   nsPrefix: onap
272   nodePortPrefix: 302
273   apps: consul msb mso message-router sdnc vid robot portal policy appc aai
274   sdc dcaegen2 log cli multicloud clamp vnfsdk aaf kube2msb
275   dataRootDir: /dockerdata-nfs
276
277   # docker repositories
278   repository:
279     onap: nexus3.onap.org:10001
280     oom: oomk8s
281     aai: aaionap
282     filebeat: docker.elastic.co
283
284   image:
285     pullPolicy: Never
286
287   # vnf deployment environment
288   vnfDeployment:
289     openstack:
290       ubuntu_14_image: "Ubuntu_14.04.5_LTS"
291       public_net_id: "e8f51956-00dd-4425-af36-045716781ffc"
292       oam_network_id: "d4769dfb-c9e4-4f72-b3d6-1d18f4ac4ee6"
293       oam_subnet_id: "191f7580-acf6-4c2b-8ec0-ba7d99b3bc4e"
294       oam_network_cidr: "192.168.30.0/24"
295   <...>
296
297
298 To deploy ONAP with this environment file, enter::
299
300   > helm deploy local/onap -n onap -f environments/onap-production.yaml
301
302 .. include:: environments_onap_demo.yaml
303    :code: yaml
304
305 When deploying all of ONAP a requirements.yaml file control which and what
306 version of the ONAP components are included.  Here is an excerpt of this
307 file:
308
309 .. code-block:: yaml
310
311   # Referencing a named repo called 'local'.
312   # Can add this repo by running commands like:
313   # > helm serve
314   # > helm repo add local http://127.0.0.1:8879
315   dependencies:
316   <...>
317     - name: so
318       version: ~2.0.0
319       repository: '@local'
320       condition: so.enabled
321   <...>
322
323 The ~ operator in the `so` version value indicates that the latest "2.X.X"
324 version of `so` shall be used thus allowing the chart to allow for minor
325 upgrades that don't impact the so API; hence, version 2.0.1 will be installed
326 in this case.
327
328 The onap/resources/environment/onap-dev.yaml (see the excerpt below) enables
329 for fine grained control on what components are included as part of this
330 deployment. By changing this `so` line to `enabled: false` the `so` component
331 will not be deployed.  If this change is part of an upgrade the existing `so`
332 component will be shut down. Other `so` parameters and even `so` child values
333 can be modified, for example the `so`'s `liveness` probe could be disabled
334 (which is not recommended as this change would disable auto-healing of `so`).
335
336 .. code-block:: yaml
337
338   #################################################################
339   # Global configuration overrides.
340   #
341   # These overrides will affect all helm charts (ie. applications)
342   # that are listed below and are 'enabled'.
343   #################################################################
344   global:
345   <...>
346
347   #################################################################
348   # Enable/disable and configure helm charts (ie. applications)
349   # to customize the ONAP deployment.
350   #################################################################
351   aaf:
352     enabled: false
353   <...>
354   so: # Service Orchestrator
355     enabled: true
356
357     replicaCount: 1
358
359     liveness:
360       # necessary to disable liveness probe when setting breakpoints
361       # in debugger so K8s doesn't restart unresponsive container
362       enabled: true
363
364   <...>
365
366 Accessing the ONAP Portal using OOM and a Kubernetes Cluster
367 ------------------------------------------------------------
368
369 The ONAP deployment created by OOM operates in a private IP network that isn't
370 publicly accessible (i.e. OpenStack VMs with private internal network) which
371 blocks access to the ONAP Portal. To enable direct access to this Portal from a
372 user's own environment (a laptop etc.) the portal application's port 8989 is
373 exposed through a `Kubernetes LoadBalancer`_ object.
374
375 Typically, to be able to access the Kubernetes nodes publicly a public address
376 is assigned. In OpenStack this is a floating IP address.
377
378 When the `portal-app` chart is deployed a Kubernetes service is created that
379 instantiates a load balancer.  The LB chooses the private interface of one of
380 the nodes as in the example below (10.0.0.4 is private to the K8s cluster only).
381 Then to be able to access the portal on port 8989 from outside the K8s &
382 OpenStack environment, the user needs to assign/get the floating IP address that
383 corresponds to the private IP as follows::
384
385   > kubectl -n onap get services|grep "portal-app"
386   portal-app  LoadBalancer   10.43.142.201   10.0.0.4   8989:30215/TCP,8006:30213/TCP,8010:30214/TCP   1d   app=portal-app,release=dev
387
388
389 In this example, use the 10.0.0.4 private address as a key find the
390 corresponding public address which in this example is 10.12.6.155. If you're
391 using OpenStack you'll do the lookup with the horizon GUI or the OpenStack CLI
392 for your tenant (openstack server list).  That IP is then used in your
393 `/etc/hosts` to map the fixed DNS aliases required by the ONAP Portal as shown
394 below::
395
396   10.12.6.155 portal.api.simpledemo.onap.org
397   10.12.6.155 vid.api.simpledemo.onap.org
398   10.12.6.155 sdc.api.fe.simpledemo.onap.org
399   10.12.6.155 sdc.workflow.plugin.simpledemo.onap.org
400   10.12.6.155 sdc.dcae.plugin.simpledemo.onap.org
401   10.12.6.155 portal-sdk.simpledemo.onap.org
402   10.12.6.155 policy.api.simpledemo.onap.org
403   10.12.6.155 aai.api.sparky.simpledemo.onap.org
404   10.12.6.155 cli.api.simpledemo.onap.org
405   10.12.6.155 msb.api.discovery.simpledemo.onap.org
406   10.12.6.155 msb.api.simpledemo.onap.org
407   10.12.6.155 clamp.api.simpledemo.onap.org
408   10.12.6.155 so.api.simpledemo.onap.org
409   10.12.6.155 sdc.workflow.plugin.simpledemo.onap.org
410
411 Ensure you've disabled any proxy settings the browser you are using to access
412 the portal and then simply access now the new ssl-encrypted URL:
413 https://portal.api.simpledemo.onap.org:30225/ONAPPORTAL/login.htm
414
415 .. note::
416   Using the HTTPS based Portal URL the Browser needs to be configured to accept
417   unsecure credentials.
418   Additionally when opening an Application inside the Portal, the Browser
419   might block the content, which requires to disable the blocking and reloading
420   of the page
421
422 .. note::
423   Besides the ONAP Portal the Components can deliver additional user interfaces,
424   please check the Component specific documentation.
425
426 .. note::
427
428    | Alternatives Considered:
429
430    -  Kubernetes port forwarding was considered but discarded as it would require
431       the end user to run a script that opens up port forwarding tunnels to each of
432       the pods that provides a portal application widget.
433
434    -  Reverting to a VNC server similar to what was deployed in the Amsterdam
435       release was also considered but there were many issues with resolution, lack
436       of volume mount, /etc/hosts dynamic update, file upload that were a tall order
437       to solve in time for the Beijing release.
438
439    Observations:
440
441    -  If you are not using floating IPs in your Kubernetes deployment and directly attaching
442       a public IP address (i.e. by using your public provider network) to your K8S Node
443       VMs' network interface, then the output of 'kubectl -n onap get services | grep "portal-app"'
444       will show your public IP instead of the private network's IP. Therefore,
445       you can grab this public IP directly (as compared to trying to find the floating
446       IP first) and map this IP in /etc/hosts.
447
448 .. figure:: oomLogoV2-Monitor.png
449    :align: right
450
451 Monitor
452 =======
453
454 All highly available systems include at least one facility to monitor the
455 health of components within the system.  Such health monitors are often used as
456 inputs to distributed coordination systems (such as etcd, Zookeeper, or Consul)
457 and monitoring systems (such as Nagios or Zabbix). OOM provides two mechanisms
458 to monitor the real-time health of an ONAP deployment:
459
460 - a Consul GUI for a human operator or downstream monitoring systems and
461   Kubernetes liveness probes that enable automatic healing of failed
462   containers, and
463 - a set of liveness probes which feed into the Kubernetes manager which
464   are described in the Heal section.
465
466 Within ONAP, Consul is the monitoring system of choice and deployed by OOM in
467 two parts:
468
469 - a three-way, centralized Consul server cluster is deployed as a highly
470   available monitor of all of the ONAP components, and
471 - a number of Consul agents.
472
473 The Consul server provides a user interface that allows a user to graphically
474 view the current health status of all of the ONAP components for which agents
475 have been created - a sample from the ONAP Integration labs follows:
476
477 .. figure:: consulHealth.png
478    :align: center
479
480 To see the real-time health of a deployment go to: http://<kubernetes IP>:30270/ui/
481 where a GUI much like the following will be found:
482
483
484 .. figure:: oomLogoV2-Heal.png
485    :align: right
486
487 Heal
488 ====
489
490 The ONAP deployment is defined by Helm charts as mentioned earlier.  These Helm
491 charts are also used to implement automatic recoverability of ONAP components
492 when individual components fail. Once ONAP is deployed, a "liveness" probe
493 starts checking the health of the components after a specified startup time.
494
495 Should a liveness probe indicate a failed container it will be terminated and a
496 replacement will be started in its place - containers are ephemeral. Should the
497 deployment specification indicate that there are one or more dependencies to
498 this container or component (for example a dependency on a database) the
499 dependency will be satisfied before the replacement container/component is
500 started. This mechanism ensures that, after a failure, all of the ONAP
501 components restart successfully.
502
503 To test healing, the following command can be used to delete a pod::
504
505   > kubectl delete pod [pod name] -n [pod namespace]
506
507 One could then use the following command to monitor the pods and observe the
508 pod being terminated and the service being automatically healed with the
509 creation of a replacement pod::
510
511   > kubectl get pods --all-namespaces -o=wide
512
513 .. figure:: oomLogoV2-Scale.png
514    :align: right
515
516 Scale
517 =====
518
519 Many of the ONAP components are horizontally scalable which allows them to
520 adapt to expected offered load.  During the Beijing release scaling is static,
521 that is during deployment or upgrade a cluster size is defined and this cluster
522 will be maintained even in the presence of faults. The parameter that controls
523 the cluster size of a given component is found in the values.yaml file for that
524 component.  Here is an excerpt that shows this parameter:
525
526 .. code-block:: yaml
527
528   # default number of instances
529   replicaCount: 1
530
531 In order to change the size of a cluster, an operator could use a helm upgrade
532 (described in detail in the next section) as follows::
533
534   > helm upgrade --set replicaCount=3 onap/so/mariadb
535
536 The ONAP components use Kubernetes provided facilities to build clustered,
537 highly available systems including: Services_ with load-balancers, ReplicaSet_,
538 and StatefulSet_.  Some of the open-source projects used by the ONAP components
539 directly support clustered configurations, for example ODL and MariaDB Galera.
540
541 The Kubernetes Services_ abstraction to provide a consistent access point for
542 each of the ONAP components, independent of the pod or container architecture
543 of that component.  For example, SDN-C uses OpenDaylight clustering with a
544 default cluster size of three but uses a Kubernetes service to and change the
545 number of pods in this abstract this cluster from the other ONAP components
546 such that the cluster could change size and this change is isolated from the
547 other ONAP components by the load-balancer implemented in the ODL service
548 abstraction.
549
550 A ReplicaSet_ is a construct that is used to describe the desired state of the
551 cluster.  For example 'replicas: 3' indicates to Kubernetes that a cluster of 3
552 instances is the desired state.  Should one of the members of the cluster fail,
553 a new member will be automatically started to replace it.
554
555 Some of the ONAP components many need a more deterministic deployment; for
556 example to enable intra-cluster communication. For these applications the
557 component can be deployed as a Kubernetes StatefulSet_ which will maintain a
558 persistent identifier for the pods and thus a stable network id for the pods.
559 For example: the pod names might be web-0, web-1, web-{N-1} for N 'web' pods
560 with corresponding DNS entries such that intra service communication is simple
561 even if the pods are physically distributed across multiple nodes. An example
562 of how these capabilities can be used is described in the Running Consul on
563 Kubernetes tutorial.
564
565 .. figure:: oomLogoV2-Upgrade.png
566    :align: right
567
568 Upgrade
569 =======
570
571 Helm has built-in capabilities to enable the upgrade of pods without causing a
572 loss of the service being provided by that pod or pods (if configured as a
573 cluster).  As described in the OOM Developer's Guide, ONAP components provide
574 an abstracted 'service' end point with the pods or containers providing this
575 service hidden from other ONAP components by a load balancer. This capability
576 is used during upgrades to allow a pod with a new image to be added to the
577 service before removing the pod with the old image. This 'make before break'
578 capability ensures minimal downtime.
579
580 Prior to doing an upgrade, determine of the status of the deployed charts::
581
582   > helm list
583   NAME REVISION UPDATED                  STATUS    CHART     NAMESPACE
584   so   1        Mon Feb 5 10:05:22 2018  DEPLOYED  so-2.0.1  default
585
586 When upgrading a cluster a parameter controls the minimum size of the cluster
587 during the upgrade while another parameter controls the maximum number of nodes
588 in the cluster.  For example, SNDC configured as a 3-way ODL cluster might
589 require that during the upgrade no fewer than 2 pods are available at all times
590 to provide service while no more than 5 pods are ever deployed across the two
591 versions at any one time to avoid depleting the cluster of resources. In this
592 scenario, the SDNC cluster would start with 3 old pods then Kubernetes may add
593 a new pod (3 old, 1 new), delete one old (2 old, 1 new), add two new pods (2
594 old, 3 new) and finally delete the 2 old pods (3 new).  During this sequence
595 the constraints of the minimum of two pods and maximum of five would be
596 maintained while providing service the whole time.
597
598 Initiation of an upgrade is triggered by changes in the Helm charts.  For
599 example, if the image specified for one of the pods in the SDNC deployment
600 specification were to change (i.e. point to a new Docker image in the nexus3
601 repository - commonly through the change of a deployment variable), the
602 sequence of events described in the previous paragraph would be initiated.
603
604 For example, to upgrade a container by changing configuration, specifically an
605 environment value::
606
607   > helm deploy onap onap/so --version 2.0.1 --set enableDebug=true
608
609 Issuing this command will result in the appropriate container being stopped by
610 Kubernetes and replaced with a new container with the new environment value.
611
612 To upgrade a component to a new version with a new configuration file enter::
613
614   > helm deploy onap onap/so --version 2.0.2 -f environments/demo.yaml
615
616 To fetch release history enter::
617
618   > helm history so
619   REVISION UPDATED                  STATUS     CHART     DESCRIPTION
620   1        Mon Feb 5 10:05:22 2018  SUPERSEDED so-2.0.1  Install complete
621   2        Mon Feb 5 10:10:55 2018  DEPLOYED   so-2.0.2  Upgrade complete
622
623 Unfortunately, not all upgrades are successful.  In recognition of this the
624 lineup of pods within an ONAP deployment is tagged such that an administrator
625 may force the ONAP deployment back to the previously tagged configuration or to
626 a specific configuration, say to jump back two steps if an incompatibility
627 between two ONAP components is discovered after the two individual upgrades
628 succeeded.
629
630 This rollback functionality gives the administrator confidence that in the
631 unfortunate circumstance of a failed upgrade the system can be rapidly brought
632 back to a known good state.  This process of rolling upgrades while under
633 service is illustrated in this short YouTube video showing a Zero Downtime
634 Upgrade of a web application while under a 10 million transaction per second
635 load.
636
637 For example, to roll-back back to previous system revision enter::
638
639   > helm rollback so 1
640
641   > helm history so
642   REVISION UPDATED                  STATUS     CHART     DESCRIPTION
643   1        Mon Feb 5 10:05:22 2018  SUPERSEDED so-2.0.1  Install complete
644   2        Mon Feb 5 10:10:55 2018  SUPERSEDED so-2.0.2  Upgrade complete
645   3        Mon Feb 5 10:14:32 2018  DEPLOYED   so-2.0.1  Rollback to 1
646
647 .. note::
648
649   The description field can be overridden to document actions taken or include
650   tracking numbers.
651
652 Many of the ONAP components contain their own databases which are used to
653 record configuration or state information.  The schemas of these databases may
654 change from version to version in such a way that data stored within the
655 database needs to be migrated between versions. If such a migration script is
656 available it can be invoked during the upgrade (or rollback) by Container
657 Lifecycle Hooks. Two such hooks are available, PostStart and PreStop, which
658 containers can access by registering a handler against one or both. Note that
659 it is the responsibility of the ONAP component owners to implement the hook
660 handlers - which could be a shell script or a call to a specific container HTTP
661 endpoint - following the guidelines listed on the Kubernetes site. Lifecycle
662 hooks are not restricted to database migration or even upgrades but can be used
663 anywhere specific operations need to be taken during lifecycle operations.
664
665 OOM uses Helm K8S package manager to deploy ONAP components. Each component is
666 arranged in a packaging format called a chart - a collection of files that
667 describe a set of k8s resources. Helm allows for rolling upgrades of the ONAP
668 component deployed. To upgrade a component Helm release you will need an
669 updated Helm chart. The chart might have modified, deleted or added values,
670 deployment yamls, and more.  To get the release name use::
671
672   > helm ls
673
674 To easily upgrade the release use::
675
676   > helm upgrade [RELEASE] [CHART]
677
678 To roll back to a previous release version use::
679
680   > helm rollback [flags] [RELEASE] [REVISION]
681
682 For example, to upgrade the onap-so helm release to the latest SO container
683 release v1.1.2:
684
685 - Edit so values.yaml which is part of the chart
686 - Change "so: nexus3.onap.org:10001/openecomp/so:v1.1.1" to
687   "so: nexus3.onap.org:10001/openecomp/so:v1.1.2"
688 - From the chart location run::
689
690   > helm upgrade onap-so
691
692 The previous so pod will be terminated and a new so pod with an updated so
693 container will be created.
694
695 .. figure:: oomLogoV2-Delete.png
696    :align: right
697
698 Delete
699 ======
700
701 Existing deployments can be partially or fully removed once they are no longer
702 needed.  To minimize errors it is recommended that before deleting components
703 from a running deployment the operator perform a 'dry-run' to display exactly
704 what will happen with a given command prior to actually deleting anything.  For
705 example::
706
707   > helm undeploy onap --dry-run
708
709 will display the outcome of deleting the 'onap' release from the
710 deployment.
711 To completely delete a release and remove it from the internal store enter::
712
713   > helm undeploy onap --purge
714
715 One can also remove individual components from a deployment by changing the
716 ONAP configuration values.  For example, to remove `so` from a running
717 deployment enter::
718
719   > helm undeploy onap-so --purge
720
721 will remove `so` as the configuration indicates it's no longer part of the
722 deployment. This might be useful if a one wanted to replace just `so` by
723 installing a custom version.