Update makefiles to use specific helm version
[oom.git] / docs / oom_user_guide.rst
1 .. This work is licensed under a Creative Commons Attribution 4.0
2 .. International License.
3 .. http://creativecommons.org/licenses/by/4.0
4 .. Copyright 2018-2020 Amdocs, Bell Canada, Orange, Samsung
5 .. _oom_user_guide:
6
7 .. Links
8 .. _Curated applications for Kubernetes: https://github.com/kubernetes/charts
9 .. _Services: https://kubernetes.io/docs/concepts/services-networking/service/
10 .. _ReplicaSet: https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
11 .. _StatefulSet: https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
12 .. _Helm Documentation: https://docs.helm.sh/helm/
13 .. _Helm: https://docs.helm.sh/
14 .. _Kubernetes: https://Kubernetes.io/
15 .. _Kubernetes LoadBalancer: https://kubernetes.io/docs/concepts/services-networking/service/#type-loadbalancer
16 .. _user-guide-label:
17
18 OOM User Guide
19 ##############
20
21 The ONAP Operations Manager (OOM) provide the ability to manage the entire
22 life-cycle of an ONAP installation, from the initial deployment to final
23 decommissioning. This guide provides instructions for users of ONAP to
24 use the Kubernetes_/Helm_ system as a complete ONAP management system.
25
26 This guide provides many examples of Helm command line operations.  For a
27 complete description of these commands please refer to the `Helm
28 Documentation`_.
29
30 .. figure:: oomLogoV2-medium.png
31    :align: right
32
33 The following sections describe the life-cycle operations:
34
35 - Deploy_ - with built-in component dependency management
36 - Configure_ - unified configuration across all ONAP components
37 - Monitor_ - real-time health monitoring feeding to a Consul UI and Kubernetes
38 - Heal_- failed ONAP containers are recreated automatically
39 - Scale_ - cluster ONAP services to enable seamless scaling
40 - Upgrade_ - change-out containers or configuration with little or no service
41   impact
42 - Delete_ - cleanup individual containers or entire deployments
43
44 .. figure:: oomLogoV2-Deploy.png
45    :align: right
46
47 Deploy
48 ======
49
50 The OOM team with assistance from the ONAP project teams, have built a
51 comprehensive set of Helm charts, yaml files very similar to TOSCA files, that
52 describe the composition of each of the ONAP components and the relationship
53 within and between components. Using this model Helm is able to deploy all of
54 ONAP with a few simple commands.
55
56 Pre-requisites
57 --------------
58 Your environment must have both the Kubernetes `kubectl` and Helm setup as a
59 one time activity.
60
61 Install Kubectl
62 ~~~~~~~~~~~~~~~
63 Enter the following to install kubectl (on Ubuntu, there are slight differences
64 on other O/Ss), the Kubernetes command line interface used to manage a
65 Kubernetes cluster::
66
67   > curl -LO https://storage.googleapis.com/kubernetes-release/release/v1.8.10/bin/linux/amd64/kubectl
68   > chmod +x ./kubectl
69   > sudo mv ./kubectl /usr/local/bin/kubectl
70   > mkdir ~/.kube
71
72 Paste kubectl config from Rancher (see the :ref:`cloud-setup-guide-label` for
73 alternative Kubernetes environment setups) into the `~/.kube/config` file.
74
75 Verify that the Kubernetes config is correct::
76
77   > kubectl get pods --all-namespaces
78
79 At this point you should see six Kubernetes pods running.
80
81 Install Helm
82 ~~~~~~~~~~~~
83 Helm is used by OOM for package and configuration management. To install Helm,
84 enter the following::
85
86   > wget http://storage.googleapis.com/kubernetes-helm/helm-v2.9.1-linux-amd64.tar.gz
87   > tar -zxvf helm-v2.9.1-linux-amd64.tar.gz
88   > sudo mv linux-amd64/helm /usr/local/bin/helm
89
90 Verify the Helm version with::
91
92   > helm version
93
94 Install the Helm Tiller application and initialize with::
95
96   > helm init
97
98 Install the Helm Repo
99 ---------------------
100 Once kubectl and Helm are setup, one needs to setup a local Helm server to
101 server up the ONAP charts::
102
103   > helm install osn/onap
104
105 .. note::
106   The osn repo is not currently available so creation of a local repository is
107   required.
108
109 Helm is able to use charts served up from a repository and comes setup with a
110 default CNCF provided `Curated applications for Kubernetes`_ repository called
111 stable which should be removed to avoid confusion::
112
113   > helm repo remove stable
114
115 .. To setup the Open Source Networking Nexus repository for helm enter::
116 ..  > helm repo add osn 'https://nexus3.onap.org:10001/helm/helm-repo-in-nexus/master/'
117
118 To prepare your system for an installation of ONAP, you'll need to::
119
120   > git clone -b frankfurt --recurse-submodules -j2 http://gerrit.onap.org/r/oom
121   > cd oom/kubernetes
122
123
124 To setup a local Helm server to server up the ONAP charts::
125
126   > helm init
127   > helm serve &
128
129 Note the port number that is listed and use it in the Helm repo add as
130 follows::
131
132   > helm repo add local http://127.0.0.1:8879
133
134 To get a list of all of the available Helm chart repositories::
135
136   > helm repo list
137   NAME   URL
138   local  http://127.0.0.1:8879
139
140 Then build your local Helm repository::
141
142   > make SKIP_LINT=TRUE [HELM_BIN=<HELM_PATH>] all
143
144 `HELM_BIN`
145   Sets the helm binary to be used. The default value use helm from PATH. Allow the user to have
146   multiple version of helm in operating system and choose which one to use.
147
148 The Helm search command reads through all of the repositories configured on the
149 system, and looks for matches::
150
151   > helm search -l
152   NAME                    VERSION    DESCRIPTION
153   local/appc              2.0.0      Application Controller
154   local/clamp             2.0.0      ONAP Clamp
155   local/common            2.0.0      Common templates for inclusion in other charts
156   local/onap              2.0.0      Open Network Automation Platform (ONAP)
157   local/robot             2.0.0      A helm Chart for kubernetes-ONAP Robot
158   local/so                2.0.0      ONAP Service Orchestrator
159
160 In any case, setup of the Helm repository is a one time activity.
161
162 Next, install Helm Plugins required to deploy the ONAP Casablanca release::
163
164   > cp -R helm/plugins/ ~/.helm
165
166 Once the repo is setup, installation of ONAP can be done with a single
167 command::
168
169   > helm deploy development local/onap --namespace onap
170
171 This will install ONAP from a local repository in a 'development' Helm release.
172 As described below, to override the default configuration values provided by
173 OOM, an environment file can be provided on the command line as follows::
174
175   > helm deploy development local/onap --namespace onap -f overrides.yaml
176
177 To get a summary of the status of all of the pods (containers) running in your
178 deployment::
179
180   > kubectl get pods --all-namespaces -o=wide
181
182 .. note::
183   The Kubernetes namespace concept allows for multiple instances of a component
184   (such as all of ONAP) to co-exist with other components in the same
185   Kubernetes cluster by isolating them entirely.  Namespaces share only the
186   hosts that form the cluster thus providing isolation between production and
187   development systems as an example.  The OOM deployment of ONAP in Beijing is
188   now done within a single Kubernetes namespace where in Amsterdam a namespace
189   was created for each of the ONAP components.
190
191 .. note::
192   The Helm `--name` option refers to a release name and not a Kubernetes namespace.
193
194
195 To install a specific version of a single ONAP component (`so` in this example)
196 with the given release name enter::
197
198   > helm deploy so onap/so --version 3.0.1
199
200 To display details of a specific resource or group of resources type::
201
202   > kubectl describe pod so-1071802958-6twbl
203
204 where the pod identifier refers to the auto-generated pod identifier.
205
206 .. figure:: oomLogoV2-Configure.png
207    :align: right
208
209 Configure
210 =========
211
212 Each project within ONAP has its own configuration data generally consisting
213 of: environment variables, configuration files, and database initial values.
214 Many technologies are used across the projects resulting in significant
215 operational complexity and an inability to apply global parameters across the
216 entire ONAP deployment. OOM solves this problem by introducing a common
217 configuration technology, Helm charts, that provide a hierarchical
218 configuration with the ability to override values with higher
219 level charts or command line options.
220
221 The structure of the configuration of ONAP is shown in the following diagram.
222 Note that key/value pairs of a parent will always take precedence over those
223 of a child. Also note that values set on the command line have the highest
224 precedence of all.
225
226 .. graphviz::
227
228    digraph config {
229       {
230          node     [shape=folder]
231          oValues  [label="values.yaml"]
232          demo     [label="onap-demo.yaml"]
233          prod     [label="onap-production.yaml"]
234          oReq     [label="requirements.yaml"]
235          soValues [label="values.yaml"]
236          soReq    [label="requirements.yaml"]
237          mdValues [label="values.yaml"]
238       }
239       {
240          oResources  [label="resources"]
241       }
242       onap -> oResources
243       onap -> oValues
244       oResources -> environments
245       oResources -> oReq
246       oReq -> so
247       environments -> demo
248       environments -> prod
249       so -> soValues
250       so -> soReq
251       so -> charts
252       charts -> mariadb
253       mariadb -> mdValues
254
255    }
256
257 The top level onap/values.yaml file contains the values required to be set
258 before deploying ONAP.  Here is the contents of this file:
259
260 .. include:: ../kubernetes/onap/values.yaml
261    :code: yaml
262
263 One may wish to create a value file that is specific to a given deployment such
264 that it can be differentiated from other deployments.  For example, a
265 onap-development.yaml file may create a minimal environment for development
266 while onap-production.yaml might describe a production deployment that operates
267 independently of the developer version.
268
269 For example, if the production OpenStack instance was different from a
270 developer's instance, the onap-production.yaml file may contain a different
271 value for the vnfDeployment/openstack/oam_network_cidr key as shown below.
272
273 .. code-block:: yaml
274
275   nsPrefix: onap
276   nodePortPrefix: 302
277   apps: consul msb mso message-router sdnc vid robot portal policy appc aai
278   sdc dcaegen2 log cli multicloud clamp vnfsdk aaf kube2msb
279   dataRootDir: /dockerdata-nfs
280
281   # docker repositories
282   repository:
283     onap: nexus3.onap.org:10001
284     oom: oomk8s
285     aai: aaionap
286     filebeat: docker.elastic.co
287
288   image:
289     pullPolicy: Never
290
291   # vnf deployment environment
292   vnfDeployment:
293     openstack:
294       ubuntu_14_image: "Ubuntu_14.04.5_LTS"
295       public_net_id: "e8f51956-00dd-4425-af36-045716781ffc"
296       oam_network_id: "d4769dfb-c9e4-4f72-b3d6-1d18f4ac4ee6"
297       oam_subnet_id: "191f7580-acf6-4c2b-8ec0-ba7d99b3bc4e"
298       oam_network_cidr: "192.168.30.0/24"
299   <...>
300
301
302 To deploy ONAP with this environment file, enter::
303
304   > helm deploy local/onap -n onap -f environments/onap-production.yaml
305
306 .. include:: environments_onap_demo.yaml
307    :code: yaml
308
309 When deploying all of ONAP a requirements.yaml file control which and what
310 version of the ONAP components are included.  Here is an excerpt of this
311 file:
312
313 .. code-block:: yaml
314
315   # Referencing a named repo called 'local'.
316   # Can add this repo by running commands like:
317   # > helm serve
318   # > helm repo add local http://127.0.0.1:8879
319   dependencies:
320   <...>
321     - name: so
322       version: ~2.0.0
323       repository: '@local'
324       condition: so.enabled
325   <...>
326
327 The ~ operator in the `so` version value indicates that the latest "2.X.X"
328 version of `so` shall be used thus allowing the chart to allow for minor
329 upgrades that don't impact the so API; hence, version 2.0.1 will be installed
330 in this case.
331
332 The onap/resources/environment/onap-dev.yaml (see the excerpt below) enables
333 for fine grained control on what components are included as part of this
334 deployment. By changing this `so` line to `enabled: false` the `so` component
335 will not be deployed.  If this change is part of an upgrade the existing `so`
336 component will be shut down. Other `so` parameters and even `so` child values
337 can be modified, for example the `so`'s `liveness` probe could be disabled
338 (which is not recommended as this change would disable auto-healing of `so`).
339
340 .. code-block:: yaml
341
342   #################################################################
343   # Global configuration overrides.
344   #
345   # These overrides will affect all helm charts (ie. applications)
346   # that are listed below and are 'enabled'.
347   #################################################################
348   global:
349   <...>
350
351   #################################################################
352   # Enable/disable and configure helm charts (ie. applications)
353   # to customize the ONAP deployment.
354   #################################################################
355   aaf:
356     enabled: false
357   <...>
358   so: # Service Orchestrator
359     enabled: true
360
361     replicaCount: 1
362
363     liveness:
364       # necessary to disable liveness probe when setting breakpoints
365       # in debugger so K8s doesn't restart unresponsive container
366       enabled: true
367
368   <...>
369
370 Accessing the ONAP Portal using OOM and a Kubernetes Cluster
371 ------------------------------------------------------------
372
373 The ONAP deployment created by OOM operates in a private IP network that isn't
374 publicly accessible (i.e. OpenStack VMs with private internal network) which
375 blocks access to the ONAP Portal. To enable direct access to this Portal from a
376 user's own environment (a laptop etc.) the portal application's port 8989 is
377 exposed through a `Kubernetes LoadBalancer`_ object.
378
379 Typically, to be able to access the Kubernetes nodes publicly a public address
380 is assigned. In OpenStack this is a floating IP address.
381
382 When the `portal-app` chart is deployed a Kubernetes service is created that
383 instantiates a load balancer.  The LB chooses the private interface of one of
384 the nodes as in the example below (10.0.0.4 is private to the K8s cluster only).
385 Then to be able to access the portal on port 8989 from outside the K8s &
386 OpenStack environment, the user needs to assign/get the floating IP address that
387 corresponds to the private IP as follows::
388
389   > kubectl -n onap get services|grep "portal-app"
390   portal-app  LoadBalancer   10.43.142.201   10.0.0.4   8989:30215/TCP,8006:30213/TCP,8010:30214/TCP   1d   app=portal-app,release=dev
391
392
393 In this example, use the 10.0.0.4 private address as a key find the
394 corresponding public address which in this example is 10.12.6.155. If you're
395 using OpenStack you'll do the lookup with the horizon GUI or the OpenStack CLI
396 for your tenant (openstack server list).  That IP is then used in your
397 `/etc/hosts` to map the fixed DNS aliases required by the ONAP Portal as shown
398 below::
399
400   10.12.6.155 portal.api.simpledemo.onap.org
401   10.12.6.155 vid.api.simpledemo.onap.org
402   10.12.6.155 sdc.api.fe.simpledemo.onap.org
403   10.12.6.155 sdc.workflow.plugin.simpledemo.onap.org
404   10.12.6.155 sdc.dcae.plugin.simpledemo.onap.org
405   10.12.6.155 portal-sdk.simpledemo.onap.org
406   10.12.6.155 policy.api.simpledemo.onap.org
407   10.12.6.155 aai.api.sparky.simpledemo.onap.org
408   10.12.6.155 cli.api.simpledemo.onap.org
409   10.12.6.155 msb.api.discovery.simpledemo.onap.org
410   10.12.6.155 msb.api.simpledemo.onap.org
411   10.12.6.155 clamp.api.simpledemo.onap.org
412   10.12.6.155 so.api.simpledemo.onap.org
413   10.12.6.155 sdc.workflow.plugin.simpledemo.onap.org
414
415 Ensure you've disabled any proxy settings the browser you are using to access
416 the portal and then simply access now the new ssl-encrypted URL:
417 https://portal.api.simpledemo.onap.org:30225/ONAPPORTAL/login.htm
418
419 .. note::
420   Using the HTTPS based Portal URL the Browser needs to be configured to accept
421   unsecure credentials.
422   Additionally when opening an Application inside the Portal, the Browser
423   might block the content, which requires to disable the blocking and reloading
424   of the page
425
426 .. note::
427   Besides the ONAP Portal the Components can deliver additional user interfaces,
428   please check the Component specific documentation.
429
430 .. note::
431
432    | Alternatives Considered:
433
434    -  Kubernetes port forwarding was considered but discarded as it would require
435       the end user to run a script that opens up port forwarding tunnels to each of
436       the pods that provides a portal application widget.
437
438    -  Reverting to a VNC server similar to what was deployed in the Amsterdam
439       release was also considered but there were many issues with resolution, lack
440       of volume mount, /etc/hosts dynamic update, file upload that were a tall order
441       to solve in time for the Beijing release.
442
443    Observations:
444
445    -  If you are not using floating IPs in your Kubernetes deployment and directly attaching
446       a public IP address (i.e. by using your public provider network) to your K8S Node
447       VMs' network interface, then the output of 'kubectl -n onap get services | grep "portal-app"'
448       will show your public IP instead of the private network's IP. Therefore,
449       you can grab this public IP directly (as compared to trying to find the floating
450       IP first) and map this IP in /etc/hosts.
451
452 .. figure:: oomLogoV2-Monitor.png
453    :align: right
454
455 Monitor
456 =======
457
458 All highly available systems include at least one facility to monitor the
459 health of components within the system.  Such health monitors are often used as
460 inputs to distributed coordination systems (such as etcd, Zookeeper, or Consul)
461 and monitoring systems (such as Nagios or Zabbix). OOM provides two mechanisms
462 to monitor the real-time health of an ONAP deployment:
463
464 - a Consul GUI for a human operator or downstream monitoring systems and
465   Kubernetes liveness probes that enable automatic healing of failed
466   containers, and
467 - a set of liveness probes which feed into the Kubernetes manager which
468   are described in the Heal section.
469
470 Within ONAP, Consul is the monitoring system of choice and deployed by OOM in
471 two parts:
472
473 - a three-way, centralized Consul server cluster is deployed as a highly
474   available monitor of all of the ONAP components, and
475 - a number of Consul agents.
476
477 The Consul server provides a user interface that allows a user to graphically
478 view the current health status of all of the ONAP components for which agents
479 have been created - a sample from the ONAP Integration labs follows:
480
481 .. figure:: consulHealth.png
482    :align: center
483
484 To see the real-time health of a deployment go to: http://<kubernetes IP>:30270/ui/
485 where a GUI much like the following will be found:
486
487
488 .. figure:: oomLogoV2-Heal.png
489    :align: right
490
491 Heal
492 ====
493
494 The ONAP deployment is defined by Helm charts as mentioned earlier.  These Helm
495 charts are also used to implement automatic recoverability of ONAP components
496 when individual components fail. Once ONAP is deployed, a "liveness" probe
497 starts checking the health of the components after a specified startup time.
498
499 Should a liveness probe indicate a failed container it will be terminated and a
500 replacement will be started in its place - containers are ephemeral. Should the
501 deployment specification indicate that there are one or more dependencies to
502 this container or component (for example a dependency on a database) the
503 dependency will be satisfied before the replacement container/component is
504 started. This mechanism ensures that, after a failure, all of the ONAP
505 components restart successfully.
506
507 To test healing, the following command can be used to delete a pod::
508
509   > kubectl delete pod [pod name] -n [pod namespace]
510
511 One could then use the following command to monitor the pods and observe the
512 pod being terminated and the service being automatically healed with the
513 creation of a replacement pod::
514
515   > kubectl get pods --all-namespaces -o=wide
516
517 .. figure:: oomLogoV2-Scale.png
518    :align: right
519
520 Scale
521 =====
522
523 Many of the ONAP components are horizontally scalable which allows them to
524 adapt to expected offered load.  During the Beijing release scaling is static,
525 that is during deployment or upgrade a cluster size is defined and this cluster
526 will be maintained even in the presence of faults. The parameter that controls
527 the cluster size of a given component is found in the values.yaml file for that
528 component.  Here is an excerpt that shows this parameter:
529
530 .. code-block:: yaml
531
532   # default number of instances
533   replicaCount: 1
534
535 In order to change the size of a cluster, an operator could use a helm upgrade
536 (described in detail in the next section) as follows::
537
538   > helm upgrade --set replicaCount=3 onap/so/mariadb
539
540 The ONAP components use Kubernetes provided facilities to build clustered,
541 highly available systems including: Services_ with load-balancers, ReplicaSet_,
542 and StatefulSet_.  Some of the open-source projects used by the ONAP components
543 directly support clustered configurations, for example ODL and MariaDB Galera.
544
545 The Kubernetes Services_ abstraction to provide a consistent access point for
546 each of the ONAP components, independent of the pod or container architecture
547 of that component.  For example, SDN-C uses OpenDaylight clustering with a
548 default cluster size of three but uses a Kubernetes service to and change the
549 number of pods in this abstract this cluster from the other ONAP components
550 such that the cluster could change size and this change is isolated from the
551 other ONAP components by the load-balancer implemented in the ODL service
552 abstraction.
553
554 A ReplicaSet_ is a construct that is used to describe the desired state of the
555 cluster.  For example 'replicas: 3' indicates to Kubernetes that a cluster of 3
556 instances is the desired state.  Should one of the members of the cluster fail,
557 a new member will be automatically started to replace it.
558
559 Some of the ONAP components many need a more deterministic deployment; for
560 example to enable intra-cluster communication. For these applications the
561 component can be deployed as a Kubernetes StatefulSet_ which will maintain a
562 persistent identifier for the pods and thus a stable network id for the pods.
563 For example: the pod names might be web-0, web-1, web-{N-1} for N 'web' pods
564 with corresponding DNS entries such that intra service communication is simple
565 even if the pods are physically distributed across multiple nodes. An example
566 of how these capabilities can be used is described in the Running Consul on
567 Kubernetes tutorial.
568
569 .. figure:: oomLogoV2-Upgrade.png
570    :align: right
571
572 Upgrade
573 =======
574
575 Helm has built-in capabilities to enable the upgrade of pods without causing a
576 loss of the service being provided by that pod or pods (if configured as a
577 cluster).  As described in the OOM Developer's Guide, ONAP components provide
578 an abstracted 'service' end point with the pods or containers providing this
579 service hidden from other ONAP components by a load balancer. This capability
580 is used during upgrades to allow a pod with a new image to be added to the
581 service before removing the pod with the old image. This 'make before break'
582 capability ensures minimal downtime.
583
584 Prior to doing an upgrade, determine of the status of the deployed charts::
585
586   > helm list
587   NAME REVISION UPDATED                  STATUS    CHART     NAMESPACE
588   so   1        Mon Feb 5 10:05:22 2018  DEPLOYED  so-2.0.1  default
589
590 When upgrading a cluster a parameter controls the minimum size of the cluster
591 during the upgrade while another parameter controls the maximum number of nodes
592 in the cluster.  For example, SNDC configured as a 3-way ODL cluster might
593 require that during the upgrade no fewer than 2 pods are available at all times
594 to provide service while no more than 5 pods are ever deployed across the two
595 versions at any one time to avoid depleting the cluster of resources. In this
596 scenario, the SDNC cluster would start with 3 old pods then Kubernetes may add
597 a new pod (3 old, 1 new), delete one old (2 old, 1 new), add two new pods (2
598 old, 3 new) and finally delete the 2 old pods (3 new).  During this sequence
599 the constraints of the minimum of two pods and maximum of five would be
600 maintained while providing service the whole time.
601
602 Initiation of an upgrade is triggered by changes in the Helm charts.  For
603 example, if the image specified for one of the pods in the SDNC deployment
604 specification were to change (i.e. point to a new Docker image in the nexus3
605 repository - commonly through the change of a deployment variable), the
606 sequence of events described in the previous paragraph would be initiated.
607
608 For example, to upgrade a container by changing configuration, specifically an
609 environment value::
610
611   > helm deploy onap onap/so --version 2.0.1 --set enableDebug=true
612
613 Issuing this command will result in the appropriate container being stopped by
614 Kubernetes and replaced with a new container with the new environment value.
615
616 To upgrade a component to a new version with a new configuration file enter::
617
618   > helm deploy onap onap/so --version 2.0.2 -f environments/demo.yaml
619
620 To fetch release history enter::
621
622   > helm history so
623   REVISION UPDATED                  STATUS     CHART     DESCRIPTION
624   1        Mon Feb 5 10:05:22 2018  SUPERSEDED so-2.0.1  Install complete
625   2        Mon Feb 5 10:10:55 2018  DEPLOYED   so-2.0.2  Upgrade complete
626
627 Unfortunately, not all upgrades are successful.  In recognition of this the
628 lineup of pods within an ONAP deployment is tagged such that an administrator
629 may force the ONAP deployment back to the previously tagged configuration or to
630 a specific configuration, say to jump back two steps if an incompatibility
631 between two ONAP components is discovered after the two individual upgrades
632 succeeded.
633
634 This rollback functionality gives the administrator confidence that in the
635 unfortunate circumstance of a failed upgrade the system can be rapidly brought
636 back to a known good state.  This process of rolling upgrades while under
637 service is illustrated in this short YouTube video showing a Zero Downtime
638 Upgrade of a web application while under a 10 million transaction per second
639 load.
640
641 For example, to roll-back back to previous system revision enter::
642
643   > helm rollback so 1
644
645   > helm history so
646   REVISION UPDATED                  STATUS     CHART     DESCRIPTION
647   1        Mon Feb 5 10:05:22 2018  SUPERSEDED so-2.0.1  Install complete
648   2        Mon Feb 5 10:10:55 2018  SUPERSEDED so-2.0.2  Upgrade complete
649   3        Mon Feb 5 10:14:32 2018  DEPLOYED   so-2.0.1  Rollback to 1
650
651 .. note::
652
653   The description field can be overridden to document actions taken or include
654   tracking numbers.
655
656 Many of the ONAP components contain their own databases which are used to
657 record configuration or state information.  The schemas of these databases may
658 change from version to version in such a way that data stored within the
659 database needs to be migrated between versions. If such a migration script is
660 available it can be invoked during the upgrade (or rollback) by Container
661 Lifecycle Hooks. Two such hooks are available, PostStart and PreStop, which
662 containers can access by registering a handler against one or both. Note that
663 it is the responsibility of the ONAP component owners to implement the hook
664 handlers - which could be a shell script or a call to a specific container HTTP
665 endpoint - following the guidelines listed on the Kubernetes site. Lifecycle
666 hooks are not restricted to database migration or even upgrades but can be used
667 anywhere specific operations need to be taken during lifecycle operations.
668
669 OOM uses Helm K8S package manager to deploy ONAP components. Each component is
670 arranged in a packaging format called a chart - a collection of files that
671 describe a set of k8s resources. Helm allows for rolling upgrades of the ONAP
672 component deployed. To upgrade a component Helm release you will need an
673 updated Helm chart. The chart might have modified, deleted or added values,
674 deployment yamls, and more.  To get the release name use::
675
676   > helm ls
677
678 To easily upgrade the release use::
679
680   > helm upgrade [RELEASE] [CHART]
681
682 To roll back to a previous release version use::
683
684   > helm rollback [flags] [RELEASE] [REVISION]
685
686 For example, to upgrade the onap-so helm release to the latest SO container
687 release v1.1.2:
688
689 - Edit so values.yaml which is part of the chart
690 - Change "so: nexus3.onap.org:10001/openecomp/so:v1.1.1" to
691   "so: nexus3.onap.org:10001/openecomp/so:v1.1.2"
692 - From the chart location run::
693
694   > helm upgrade onap-so
695
696 The previous so pod will be terminated and a new so pod with an updated so
697 container will be created.
698
699 .. figure:: oomLogoV2-Delete.png
700    :align: right
701
702 Delete
703 ======
704
705 Existing deployments can be partially or fully removed once they are no longer
706 needed.  To minimize errors it is recommended that before deleting components
707 from a running deployment the operator perform a 'dry-run' to display exactly
708 what will happen with a given command prior to actually deleting anything.  For
709 example::
710
711   > helm undeploy onap --dry-run
712
713 will display the outcome of deleting the 'onap' release from the
714 deployment.
715 To completely delete a release and remove it from the internal store enter::
716
717   > helm undeploy onap --purge
718
719 One can also remove individual components from a deployment by changing the
720 ONAP configuration values.  For example, to remove `so` from a running
721 deployment enter::
722
723   > helm undeploy onap-so --purge
724
725 will remove `so` as the configuration indicates it's no longer part of the
726 deployment. This might be useful if a one wanted to replace just `so` by
727 installing a custom version.