2 * ============LICENSE_START=======================================================
3 * Copyright (C) 2016-2018 Ericsson. All rights reserved.
4 * ================================================================================
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
9 * http://www.apache.org/licenses/LICENSE-2.0
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
17 * SPDX-License-Identifier: Apache-2.0
18 * ============LICENSE_END=========================================================
21 package org.onap.policy.apex.examples.adaptive.model.java;
23 import java.util.Arrays;
24 import java.util.LinkedHashMap;
25 import java.util.LinkedList;
26 import java.util.List;
29 import org.apache.commons.math3.distribution.TDistribution;
30 import org.apache.commons.math3.util.FastMath;
31 import org.onap.policy.apex.core.engine.executor.context.TaskSelectionExecutionContext;
32 import org.onap.policy.apex.examples.adaptive.concepts.AnomalyDetection;
33 import org.onap.policy.apex.model.basicmodel.concepts.ApexException;
34 import org.slf4j.Logger;
37 * The Class AnomalyDetectionPolicyDecideTaskSelectionLogic.
39 public class AnomalyDetectionPolicyDecideTaskSelectionLogic {
40 private Logger logger;
42 // Recurring string constants
43 private static final String ANOMALY_DETECTION_ALBUM = "AnomalyDetectionAlbum";
44 private static final String ANOMALY_DETECTION = "AnomalyDetection";
47 private static final double ANOMALY_SENSITIVITY = 0.05;
48 private static final int FREQUENCY = 360;
51 * Some utility methods
53 // exponential = 2(n+1)
54 private static final double EMA_EXPONENT = 2.0 / (7.0 + 1.0);
55 private static final double EMA_EXPONENT_1 = (1.0 - EMA_EXPONENT);
58 * A map to hold the Anomaly degree/levels/probabilities required for each task.<br>
59 * If there is no task defined for a calculated anomaly-degree, then the default task is
61 * The map use (LinkedHashMap) is an insertion-ordered map, so the first interval matching a
64 // CHECKSTYLE:OFF: checkstyle:magicNumber
65 private static final Map<double[], String> TASK_INTERVALS = new LinkedHashMap<>();
68 TASK_INTERVALS.put(new double[] {0.0, 0.1}, null); // null will mean default task
69 TASK_INTERVALS.put(new double[] {0.25, 0.5}, "AnomalyDetectionDecideTask1");
70 TASK_INTERVALS.put(new double[] {0.5, 1.01}, "AnomalyDetectionDecideTask2");
72 // CHECKSTYLE:ON: checkstyle:magicNumber
74 private volatile TaskSelectionExecutionContext executionContext;
79 * @param executor the executor
82 public boolean getTask(final TaskSelectionExecutionContext executor) {
83 executionContext = executor;
84 logger = executionContext.logger;
85 String id = executor.subject.getId();
87 String inFields = executor.inFields.toString();
88 logger.debug(inFields);
89 final double now = (Double) (executor.inFields.get("MonitoredValue"));
90 final Integer iteration = (Integer) (executor.inFields.get("Iteration"));
91 // get the double[forecastedValue, AnomalyScore, AnomalyProbability]
92 final double[] vals = this.forecastingAndAnomaly(now);
93 final double anomalyness = vals[2];
95 for (final Map.Entry<double[], String> i : TASK_INTERVALS.entrySet()) {
96 if (checkInterval(anomalyness, i.getKey())) {
102 executionContext.subject.getDefaultTaskKey().copyTo(executionContext.selectedTask);
104 executionContext.subject.getTaskKey(task).copyTo(executionContext.selectedTask);
106 if (logger.isDebugEnabled()) {
108 "TestAnomalyDetectionTSLPolicy0000DecideStateTaskSelectionLogic.getTask():\t************\t\t\t\t"
109 + "Iteration:\t" + iteration + "\tValue:\t" + now + "\tForecast:\t" + vals[0]
110 + "\tAnomalyScore:\t" + vals[1] + "\tAnomalyProbability:\t" + vals[2] + "\tInvoking Task:\t"
111 + executionContext.selectedTask);
117 * Anomaly detection and forecast.
119 * @param value The current value
120 * @return Null if the function can not be executed correctly, otherwise double[forecastedValue,
121 * AnomalyScore, AnomalyProbability]
123 public double[] forecastingAndAnomaly(final double value) {
125 executionContext.getContextAlbum(ANOMALY_DETECTION_ALBUM).lockForWriting(ANOMALY_DETECTION);
126 } catch (final ApexException e) {
127 logger.error("Failed to acquire write lock on \"AnomalyDetection\" context", e);
128 return new double[0];
131 // Get the context object
132 AnomalyDetection anomalyDetection =
133 (AnomalyDetection) executionContext.getContextAlbum(ANOMALY_DETECTION_ALBUM).get(ANOMALY_DETECTION);
134 if (anomalyDetection == null) {
135 anomalyDetection = new AnomalyDetection();
136 executionContext.getContextAlbum(ANOMALY_DETECTION_ALBUM).put(ANOMALY_DETECTION, anomalyDetection);
139 // Check the lists are initialized
140 if (!anomalyDetection.isInitialized()) {
141 anomalyDetection.init(FREQUENCY);
144 boolean unsetfirstround = false;
146 int frequency = anomalyDetection.getFrequency();
147 frequency = frequency + 1;
149 // reset frequency counter
150 if (frequency >= FREQUENCY) {
151 unsetfirstround = true;
154 anomalyDetection.setFrequency(frequency);
156 if (unsetfirstround && anomalyDetection.getFirstRound()) {
157 anomalyDetection.setFirstRound(false);
160 // --------- calculate the forecasted value - simple version
161 final Double lastForecast = anomalyDetection.getFrequencyForecasted().get(frequency);
163 // get forecast for current value
164 final double forecastedValue = lastForecast == null ? value : expMovingAverage(value, lastForecast);
166 // --------- calculate the anomalyScore
167 final double anomalyScore = lastForecast == null ? 0.0 : FastMath.abs(lastForecast - value);
169 anomalyDetection.getFrequencyForecasted().set(frequency, forecastedValue);
171 // anomaly score is ignored in the first frequency period
172 if (!anomalyDetection.getFirstRound()) {
173 ((LinkedList<Double>) anomalyDetection.getAnomalyScores()).addLast(anomalyScore);
176 // CHECKSTYLE:OFF: checkstyle:magicNumber
177 // max FREQUENCY*4 anomaly scores history
178 listSizeControl(anomalyDetection.getAnomalyScores(), FREQUENCY * 4);
180 // ---------- calculate the anomaly probability
181 double anomalyProbability = 0.0;
182 if (anomalyDetection.getAnomalyScores().size() > 30) {
184 anomalyProbability = getStatsTest(anomalyDetection.getAnomalyScores(), ANOMALY_SENSITIVITY);
186 // CHECKSTYLE:ON: checkstyle:magicNumber
189 executionContext.getContextAlbum(ANOMALY_DETECTION_ALBUM).unlockForWriting(ANOMALY_DETECTION);
190 } catch (final ApexException e) {
191 logger.error("Failed to release write lock on \"AnomalyDetection\" context", e);
192 return new double[0];
195 return new double[] {forecastedValue, anomalyScore, anomalyProbability};
199 * Is the passed value inside the interval, i.e. (value < interval[1] && value>=interval[0]).
201 * @param value The value to check
202 * @param interval A 2 element double array describing an interval
203 * @return true if the value is between interval[0] (inclusive) and interval[1] (exclusive),
204 * i.e. (value < interval[1] && value>=interval[0]). Otherwise false;
206 private static boolean checkInterval(final double value, final double[] interval) {
207 if (interval == null || interval.length != 2) {
208 throw new IllegalArgumentException("something other than an interval passed to checkInterval");
210 final double min = interval[0];
211 final double max = interval[1];
212 return (value < max && value >= min);
216 * calculate the anomaly probability using statistical test.
218 * @param values the values
219 * @param significanceLevel the significance level
220 * @return the anomaly probability
222 private static double getStatsTest(final List<Double> values, final double significanceLevel) {
223 if (isAllEqual(values)) {
226 // the targeted value or the last value
227 final double currentV = values.get(values.size() - 1);
228 Double[] lvaluesCopy = values.toArray(new Double[values.size()]);
229 Arrays.sort(lvaluesCopy); // takes ~40% of method time
231 double mean = getMean(lvaluesCopy);
232 // get the test value: val
233 double val = getV(lvaluesCopy, mean, true);
234 // get the p value for the test value
235 double pvalue = getPValue(lvaluesCopy, val, mean); // takes approx 25% of method time
237 // check the critical level
238 while (pvalue < significanceLevel) { // takes approx 20% of method time
239 // the score value as the anomaly probability
240 final double score = (significanceLevel - pvalue) / significanceLevel;
241 if (Double.compare(val, currentV) == 0) {
244 // do the critical check again for the left values
245 lvaluesCopy = removevalue(lvaluesCopy, val);
246 if (isAllEqual(lvaluesCopy)) {
250 mean = getMean(lvaluesCopy);
251 val = getV(lvaluesCopy, mean, true);
252 pvalue = getPValue(lvaluesCopy, val, mean);
258 * Get the test value based on mean from sorted values.
260 * @param lvalues the l values
261 * @param mean the mean
262 * @param maxValueOnly : only the max extreme value will be tested
263 * @return the value to be tested
265 private static double getV(final Double[] lvalues, final double mean, final boolean maxValueOnly) {
266 double val = lvalues[lvalues.length - 1];
267 // max value as the extreme value
271 // check the extreme side
272 if ((val - mean) < (mean - lvalues[0])) {
279 * calculate the P value for the t distribution.
281 * @param lvalues the l values
282 * @param val the value
283 * @param mean the mean
284 * @return the p value
286 private static double getPValue(final Double[] lvalues, final double val, final double mean) {
288 final double z = FastMath.abs(val - mean) / getStdDev(lvalues, mean);
290 final double n = lvalues.length;
291 final double s = (z * z * n * (2.0 - n)) / (z * z * n - (n - 1.0) * (n - 1.0));
292 final double t = FastMath.sqrt(s);
293 // default p value = 0
295 if (!Double.isNaN(t)) {
296 // t distribution with n-2 degrees of freedom
297 final TDistribution tDist = new TDistribution(n - 2);
298 pvalue = n * (1.0 - tDist.cumulativeProbability(t));
299 // set max pvalue = 1
300 pvalue = pvalue > 1.0 ? 1.0 : pvalue;
306 * exponential moving average.
308 * @param value the value
309 * @param lastForecast the last forecast
312 private static double expMovingAverage(final double value, final double lastForecast) {
313 return (value * EMA_EXPONENT) + (lastForecast * EMA_EXPONENT_1);
317 * Remove the first occurrence of the value val from the array.
319 * @param lvalues the l values
320 * @param val the value
321 * @return the double[]
323 private static Double[] removevalue(final Double[] lvalues, final double val) {
324 for (int i = 0; i < lvalues.length; i++) {
325 if (Double.compare(lvalues[i], val) == 0) {
326 final Double[] ret = new Double[lvalues.length - 1];
327 System.arraycopy(lvalues, 0, ret, 0, i);
328 System.arraycopy(lvalues, i + 1, ret, i, lvalues.length - i - 1);
336 * get mean value of double list.
338 * @param lvalues the l values
341 private static double getMean(final Double[] lvalues) {
343 for (final double d : lvalues) {
347 return sum / lvalues.length;
351 * get standard deviation of double list.
353 * @param lvalues the l values
354 * @param mean the mean
357 private static double getStdDev(final Double[] lvalues, final double mean) {
359 for (final double d : lvalues) {
360 temp += (mean - d) * (mean - d);
362 return FastMath.sqrt(temp / lvalues.length);
366 * Chop head off list to make it length max .
368 * @param list the list to chop
369 * @param max the max size
371 private static void listSizeControl(final List<?> list, final int max) {
372 final int k = list.size();
374 // Chop the head off the list.
375 list.subList(0, k - max).clear();
380 * return true if all values are equal.
382 * @param lvalues the l values
383 * @return true, if checks if is all equal
385 private static boolean isAllEqual(final List<Double> lvalues) {
386 final double first = lvalues.get(0);
387 for (final Double d : lvalues) {
388 if (Double.compare(d, first) != 0) {
396 * return true if all values are equal.
398 * @param lvalues the l values
399 * @return true, if checks if is all equal
401 private static boolean isAllEqual(final Double[] lvalues) {
402 final double first = lvalues[0];
403 for (final Double d : lvalues) {
404 if (Double.compare(d, first) != 0) {