ba225c5ef43a8c32a1b9ae1b33914dee89c536a0
[sdc/sdc-distribution-client.git] /
1 ######################## BEGIN LICENSE BLOCK ########################
2 # The Original Code is Mozilla Universal charset detector code.
3 #
4 # The Initial Developer of the Original Code is
5 #          Shy Shalom
6 # Portions created by the Initial Developer are Copyright (C) 2005
7 # the Initial Developer. All Rights Reserved.
8 #
9 # Contributor(s):
10 #   Mark Pilgrim - port to Python
11 #
12 # This library is free software; you can redistribute it and/or
13 # modify it under the terms of the GNU Lesser General Public
14 # License as published by the Free Software Foundation; either
15 # version 2.1 of the License, or (at your option) any later version.
16 #
17 # This library is distributed in the hope that it will be useful,
18 # but WITHOUT ANY WARRANTY; without even the implied warranty of
19 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20 # Lesser General Public License for more details.
21 #
22 # You should have received a copy of the GNU Lesser General Public
23 # License along with this library; if not, write to the Free Software
24 # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
25 # 02110-1301  USA
26 ######################### END LICENSE BLOCK #########################
27
28 from .charsetprober import CharSetProber
29 from .constants import eNotMe, eDetecting
30 from .compat import wrap_ord
31
32 # This prober doesn't actually recognize a language or a charset.
33 # It is a helper prober for the use of the Hebrew model probers
34
35 ### General ideas of the Hebrew charset recognition ###
36 #
37 # Four main charsets exist in Hebrew:
38 # "ISO-8859-8" - Visual Hebrew
39 # "windows-1255" - Logical Hebrew
40 # "ISO-8859-8-I" - Logical Hebrew
41 # "x-mac-hebrew" - ?? Logical Hebrew ??
42 #
43 # Both "ISO" charsets use a completely identical set of code points, whereas
44 # "windows-1255" and "x-mac-hebrew" are two different proper supersets of
45 # these code points. windows-1255 defines additional characters in the range
46 # 0x80-0x9F as some misc punctuation marks as well as some Hebrew-specific
47 # diacritics and additional 'Yiddish' ligature letters in the range 0xc0-0xd6.
48 # x-mac-hebrew defines similar additional code points but with a different
49 # mapping.
50 #
51 # As far as an average Hebrew text with no diacritics is concerned, all four
52 # charsets are identical with respect to code points. Meaning that for the
53 # main Hebrew alphabet, all four map the same values to all 27 Hebrew letters
54 # (including final letters).
55 #
56 # The dominant difference between these charsets is their directionality.
57 # "Visual" directionality means that the text is ordered as if the renderer is
58 # not aware of a BIDI rendering algorithm. The renderer sees the text and
59 # draws it from left to right. The text itself when ordered naturally is read
60 # backwards. A buffer of Visual Hebrew generally looks like so:
61 # "[last word of first line spelled backwards] [whole line ordered backwards
62 # and spelled backwards] [first word of first line spelled backwards]
63 # [end of line] [last word of second line] ... etc' "
64 # adding punctuation marks, numbers and English text to visual text is
65 # naturally also "visual" and from left to right.
66 #
67 # "Logical" directionality means the text is ordered "naturally" according to
68 # the order it is read. It is the responsibility of the renderer to display
69 # the text from right to left. A BIDI algorithm is used to place general
70 # punctuation marks, numbers and English text in the text.
71 #
72 # Texts in x-mac-hebrew are almost impossible to find on the Internet. From
73 # what little evidence I could find, it seems that its general directionality
74 # is Logical.
75 #
76 # To sum up all of the above, the Hebrew probing mechanism knows about two
77 # charsets:
78 # Visual Hebrew - "ISO-8859-8" - backwards text - Words and sentences are
79 #    backwards while line order is natural. For charset recognition purposes
80 #    the line order is unimportant (In fact, for this implementation, even
81 #    word order is unimportant).
82 # Logical Hebrew - "windows-1255" - normal, naturally ordered text.
83 #
84 # "ISO-8859-8-I" is a subset of windows-1255 and doesn't need to be
85 #    specifically identified.
86 # "x-mac-hebrew" is also identified as windows-1255. A text in x-mac-hebrew
87 #    that contain special punctuation marks or diacritics is displayed with
88 #    some unconverted characters showing as question marks. This problem might
89 #    be corrected using another model prober for x-mac-hebrew. Due to the fact
90 #    that x-mac-hebrew texts are so rare, writing another model prober isn't
91 #    worth the effort and performance hit.
92 #
93 #### The Prober ####
94 #
95 # The prober is divided between two SBCharSetProbers and a HebrewProber,
96 # all of which are managed, created, fed data, inquired and deleted by the
97 # SBCSGroupProber. The two SBCharSetProbers identify that the text is in
98 # fact some kind of Hebrew, Logical or Visual. The final decision about which
99 # one is it is made by the HebrewProber by combining final-letter scores
100 # with the scores of the two SBCharSetProbers to produce a final answer.
101 #
102 # The SBCSGroupProber is responsible for stripping the original text of HTML
103 # tags, English characters, numbers, low-ASCII punctuation characters, spaces
104 # and new lines. It reduces any sequence of such characters to a single space.
105 # The buffer fed to each prober in the SBCS group prober is pure text in
106 # high-ASCII.
107 # The two SBCharSetProbers (model probers) share the same language model:
108 # Win1255Model.
109 # The first SBCharSetProber uses the model normally as any other
110 # SBCharSetProber does, to recognize windows-1255, upon which this model was
111 # built. The second SBCharSetProber is told to make the pair-of-letter
112 # lookup in the language model backwards. This in practice exactly simulates
113 # a visual Hebrew model using the windows-1255 logical Hebrew model.
114 #
115 # The HebrewProber is not using any language model. All it does is look for
116 # final-letter evidence suggesting the text is either logical Hebrew or visual
117 # Hebrew. Disjointed from the model probers, the results of the HebrewProber
118 # alone are meaningless. HebrewProber always returns 0.00 as confidence
119 # since it never identifies a charset by itself. Instead, the pointer to the
120 # HebrewProber is passed to the model probers as a helper "Name Prober".
121 # When the Group prober receives a positive identification from any prober,
122 # it asks for the name of the charset identified. If the prober queried is a
123 # Hebrew model prober, the model prober forwards the call to the
124 # HebrewProber to make the final decision. In the HebrewProber, the
125 # decision is made according to the final-letters scores maintained and Both
126 # model probers scores. The answer is returned in the form of the name of the
127 # charset identified, either "windows-1255" or "ISO-8859-8".
128
129 # windows-1255 / ISO-8859-8 code points of interest
130 FINAL_KAF = 0xea
131 NORMAL_KAF = 0xeb
132 FINAL_MEM = 0xed
133 NORMAL_MEM = 0xee
134 FINAL_NUN = 0xef
135 NORMAL_NUN = 0xf0
136 FINAL_PE = 0xf3
137 NORMAL_PE = 0xf4
138 FINAL_TSADI = 0xf5
139 NORMAL_TSADI = 0xf6
140
141 # Minimum Visual vs Logical final letter score difference.
142 # If the difference is below this, don't rely solely on the final letter score
143 # distance.
144 MIN_FINAL_CHAR_DISTANCE = 5
145
146 # Minimum Visual vs Logical model score difference.
147 # If the difference is below this, don't rely at all on the model score
148 # distance.
149 MIN_MODEL_DISTANCE = 0.01
150
151 VISUAL_HEBREW_NAME = "ISO-8859-8"
152 LOGICAL_HEBREW_NAME = "windows-1255"
153
154
155 class HebrewProber(CharSetProber):
156     def __init__(self):
157         CharSetProber.__init__(self)
158         self._mLogicalProber = None
159         self._mVisualProber = None
160         self.reset()
161
162     def reset(self):
163         self._mFinalCharLogicalScore = 0
164         self._mFinalCharVisualScore = 0
165         # The two last characters seen in the previous buffer,
166         # mPrev and mBeforePrev are initialized to space in order to simulate
167         # a word delimiter at the beginning of the data
168         self._mPrev = ' '
169         self._mBeforePrev = ' '
170         # These probers are owned by the group prober.
171
172     def set_model_probers(self, logicalProber, visualProber):
173         self._mLogicalProber = logicalProber
174         self._mVisualProber = visualProber
175
176     def is_final(self, c):
177         return wrap_ord(c) in [FINAL_KAF, FINAL_MEM, FINAL_NUN, FINAL_PE,
178                                FINAL_TSADI]
179
180     def is_non_final(self, c):
181         # The normal Tsadi is not a good Non-Final letter due to words like
182         # 'lechotet' (to chat) containing an apostrophe after the tsadi. This
183         # apostrophe is converted to a space in FilterWithoutEnglishLetters
184         # causing the Non-Final tsadi to appear at an end of a word even
185         # though this is not the case in the original text.
186         # The letters Pe and Kaf rarely display a related behavior of not being
187         # a good Non-Final letter. Words like 'Pop', 'Winamp' and 'Mubarak'
188         # for example legally end with a Non-Final Pe or Kaf. However, the
189         # benefit of these letters as Non-Final letters outweighs the damage
190         # since these words are quite rare.
191         return wrap_ord(c) in [NORMAL_KAF, NORMAL_MEM, NORMAL_NUN, NORMAL_PE]
192
193     def feed(self, aBuf):
194         # Final letter analysis for logical-visual decision.
195         # Look for evidence that the received buffer is either logical Hebrew
196         # or visual Hebrew.
197         # The following cases are checked:
198         # 1) A word longer than 1 letter, ending with a final letter. This is
199         #    an indication that the text is laid out "naturally" since the
200         #    final letter really appears at the end. +1 for logical score.
201         # 2) A word longer than 1 letter, ending with a Non-Final letter. In
202         #    normal Hebrew, words ending with Kaf, Mem, Nun, Pe or Tsadi,
203         #    should not end with the Non-Final form of that letter. Exceptions
204         #    to this rule are mentioned above in isNonFinal(). This is an
205         #    indication that the text is laid out backwards. +1 for visual
206         #    score
207         # 3) A word longer than 1 letter, starting with a final letter. Final
208         #    letters should not appear at the beginning of a word. This is an
209         #    indication that the text is laid out backwards. +1 for visual
210         #    score.
211         #
212         # The visual score and logical score are accumulated throughout the
213         # text and are finally checked against each other in GetCharSetName().
214         # No checking for final letters in the middle of words is done since
215         # that case is not an indication for either Logical or Visual text.
216         #
217         # We automatically filter out all 7-bit characters (replace them with
218         # spaces) so the word boundary detection works properly. [MAP]
219
220         if self.get_state() == eNotMe:
221             # Both model probers say it's not them. No reason to continue.
222             return eNotMe
223
224         aBuf = self.filter_high_bit_only(aBuf)
225
226         for cur in aBuf:
227             if cur == ' ':
228                 # We stand on a space - a word just ended
229                 if self._mBeforePrev != ' ':
230                     # next-to-last char was not a space so self._mPrev is not a
231                     # 1 letter word
232                     if self.is_final(self._mPrev):
233                         # case (1) [-2:not space][-1:final letter][cur:space]
234                         self._mFinalCharLogicalScore += 1
235                     elif self.is_non_final(self._mPrev):
236                         # case (2) [-2:not space][-1:Non-Final letter][
237                         #  cur:space]
238                         self._mFinalCharVisualScore += 1
239             else:
240                 # Not standing on a space
241                 if ((self._mBeforePrev == ' ') and
242                         (self.is_final(self._mPrev)) and (cur != ' ')):
243                     # case (3) [-2:space][-1:final letter][cur:not space]
244                     self._mFinalCharVisualScore += 1
245             self._mBeforePrev = self._mPrev
246             self._mPrev = cur
247
248         # Forever detecting, till the end or until both model probers return
249         # eNotMe (handled above)
250         return eDetecting
251
252     def get_charset_name(self):
253         # Make the decision: is it Logical or Visual?
254         # If the final letter score distance is dominant enough, rely on it.
255         finalsub = self._mFinalCharLogicalScore - self._mFinalCharVisualScore
256         if finalsub >= MIN_FINAL_CHAR_DISTANCE:
257             return LOGICAL_HEBREW_NAME
258         if finalsub <= -MIN_FINAL_CHAR_DISTANCE:
259             return VISUAL_HEBREW_NAME
260
261         # It's not dominant enough, try to rely on the model scores instead.
262         modelsub = (self._mLogicalProber.get_confidence()
263                     - self._mVisualProber.get_confidence())
264         if modelsub > MIN_MODEL_DISTANCE:
265             return LOGICAL_HEBREW_NAME
266         if modelsub < -MIN_MODEL_DISTANCE:
267             return VISUAL_HEBREW_NAME
268
269         # Still no good, back to final letter distance, maybe it'll save the
270         # day.
271         if finalsub < 0.0:
272             return VISUAL_HEBREW_NAME
273
274         # (finalsub > 0 - Logical) or (don't know what to do) default to
275         # Logical.
276         return LOGICAL_HEBREW_NAME
277
278     def get_state(self):
279         # Remain active as long as any of the model probers are active.
280         if (self._mLogicalProber.get_state() == eNotMe) and \
281            (self._mVisualProber.get_state() == eNotMe):
282             return eNotMe
283         return eDetecting