2 * ============LICENSE_START=======================================================
3 * Copyright (C) 2016-2018 Ericsson. All rights reserved.
4 * ================================================================================
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
9 * http://www.apache.org/licenses/LICENSE-2.0
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
17 * SPDX-License-Identifier: Apache-2.0
18 * ============LICENSE_END=========================================================
21 package org.onap.policy.apex.examples.adaptive.model.java;
23 import java.util.Arrays;
24 import java.util.LinkedHashMap;
25 import java.util.LinkedList;
26 import java.util.List;
29 import org.apache.commons.math3.distribution.TDistribution;
30 import org.apache.commons.math3.util.FastMath;
31 import org.onap.policy.apex.core.engine.executor.context.TaskSelectionExecutionContext;
32 import org.onap.policy.apex.examples.adaptive.concepts.AnomalyDetection;
33 import org.onap.policy.apex.model.basicmodel.concepts.ApexException;
34 import org.slf4j.Logger;
37 * The Class AnomalyDetectionPolicyDecideTaskSelectionLogic.
39 public class AnomalyDetectionPolicyDecideTaskSelectionLogic {
40 private Logger logger;
42 // Recurring string constants
43 private static final String ANOMALY_DETECTION_ALBUM = "AnomalyDetectionAlbum";
44 private static final String ANOMALY_DETECTION = "AnomalyDetection";
47 private static final double ANOMALY_SENSITIVITY = 0.05;
48 private static final int FREQUENCY = 360;
51 * A map to hold the Anomaly degree/levels/probabilities required for each task.<br>
52 * If there is no task defined for a calculated anomaly-degree, then the default task is
54 * The map use (LinkedHashMap) is an insertion-ordered map, so the first interval matching a
57 // CHECKSTYLE:OFF: checkstyle:magicNumber
58 private static final Map<double[], String> TASK_INTERVALS = new LinkedHashMap<>();
61 TASK_INTERVALS.put(new double[] {0.0, 0.1}, null); // null will mean default task
62 TASK_INTERVALS.put(new double[] {0.25, 0.5}, "AnomalyDetectionDecideTask1");
63 TASK_INTERVALS.put(new double[] {0.5, 1.01}, "AnomalyDetectionDecideTask2");
65 // CHECKSTYLE:ON: checkstyle:magicNumber
67 private volatile TaskSelectionExecutionContext executionContext;
72 * @param executor the executor
75 public boolean getTask(final TaskSelectionExecutionContext executor) {
76 executionContext = executor;
77 logger = executionContext.logger;
78 String id = executor.subject.getId();
80 String inFields = executor.inFields.toString();
81 logger.debug(inFields);
82 final double now = (Double) (executor.inFields.get("MonitoredValue"));
83 final Integer iteration = (Integer) (executor.inFields.get("Iteration"));
84 // get the double[forecastedValue, AnomalyScore, AnomalyProbability]
85 final double[] vals = this.forecastingAndAnomaly(now);
86 final double anomalyness = vals[2];
88 for (final Map.Entry<double[], String> i : TASK_INTERVALS.entrySet()) {
89 if (checkInterval(anomalyness, i.getKey())) {
95 executionContext.subject.getDefaultTaskKey().copyTo(executionContext.selectedTask);
97 executionContext.subject.getTaskKey(task).copyTo(executionContext.selectedTask);
99 if (logger.isDebugEnabled()) {
101 "TestAnomalyDetectionTSLPolicy0000DecideStateTaskSelectionLogic.getTask():\t************\t\t\t\t"
102 + "Iteration:\t" + iteration + "\tValue:\t" + now + "\tForecast:\t" + vals[0]
103 + "\tAnomalyScore:\t" + vals[1] + "\tAnomalyProbability:\t" + vals[2] + "\tInvoking Task:\t"
104 + executionContext.selectedTask);
110 * Anomaly detection and forecast.
112 * @param value The current value
113 * @return Null if the function can not be executed correctly, otherwise double[forecastedValue,
114 * AnomalyScore, AnomalyProbability]
116 public double[] forecastingAndAnomaly(final double value) {
118 executionContext.getContextAlbum(ANOMALY_DETECTION_ALBUM).lockForWriting(ANOMALY_DETECTION);
119 } catch (final ApexException e) {
120 logger.error("Failed to acquire write lock on \"AnomalyDetection\" context", e);
121 return new double[0];
124 // Get the context object
125 AnomalyDetection anomalyDetection =
126 (AnomalyDetection) executionContext.getContextAlbum(ANOMALY_DETECTION_ALBUM).get(ANOMALY_DETECTION);
127 if (anomalyDetection == null) {
128 anomalyDetection = new AnomalyDetection();
129 executionContext.getContextAlbum(ANOMALY_DETECTION_ALBUM).put(ANOMALY_DETECTION, anomalyDetection);
132 // Check the lists are initialized
133 if (!anomalyDetection.isInitialized()) {
134 anomalyDetection.init(FREQUENCY);
137 boolean unsetfirstround = false;
139 int frequency = anomalyDetection.getFrequency();
140 frequency = frequency + 1;
142 // reset frequency counter
143 if (frequency >= FREQUENCY) {
144 unsetfirstround = true;
147 anomalyDetection.setFrequency(frequency);
149 if (unsetfirstround && anomalyDetection.getFirstRound()) {
150 anomalyDetection.setFirstRound(false);
153 // --------- calculate the forecasted value - simple version
154 final Double lastForecast = anomalyDetection.getFrequencyForecasted().get(frequency);
156 // get forecast for current value
157 final double forecastedValue = lastForecast == null ? value : expMovingAverage(value, lastForecast);
159 // --------- calculate the anomalyScore
160 final double anomalyScore = lastForecast == null ? 0.0 : FastMath.abs(lastForecast - value);
162 anomalyDetection.getFrequencyForecasted().set(frequency, forecastedValue);
164 // anomaly score is ignored in the first frequency period
165 if (!anomalyDetection.getFirstRound()) {
166 ((LinkedList<Double>) anomalyDetection.getAnomalyScores()).addLast(anomalyScore);
169 // CHECKSTYLE:OFF: checkstyle:magicNumber
170 // max FREQUENCY*4 anomaly scores history
171 listSizeControl(anomalyDetection.getAnomalyScores(), FREQUENCY * 4);
173 // ---------- calculate the anomaly probability
174 double anomalyProbability = 0.0;
175 if (anomalyDetection.getAnomalyScores().size() > 30) {
177 anomalyProbability = getStatsTest(anomalyDetection.getAnomalyScores(), ANOMALY_SENSITIVITY);
179 // CHECKSTYLE:ON: checkstyle:magicNumber
182 executionContext.getContextAlbum(ANOMALY_DETECTION_ALBUM).unlockForWriting(ANOMALY_DETECTION);
183 } catch (final ApexException e) {
184 logger.error("Failed to release write lock on \"AnomalyDetection\" context", e);
185 return new double[0];
188 return new double[] {forecastedValue, anomalyScore, anomalyProbability};
192 * Is the passed value inside the interval, i.e. (value < interval[1] && value>=interval[0]).
194 * @param value The value to check
195 * @param interval A 2 element double array describing an interval
196 * @return true if the value is between interval[0] (inclusive) and interval[1] (exclusive),
197 * i.e. (value < interval[1] && value>=interval[0]). Otherwise false;
199 private static boolean checkInterval(final double value, final double[] interval) {
200 if (interval == null || interval.length != 2) {
201 throw new IllegalArgumentException("something other than an interval passed to checkInterval");
203 final double min = interval[0];
204 final double max = interval[1];
205 return (value < max && value >= min);
209 * calculate the anomaly probability using statistical test.
211 * @param values the values
212 * @param significanceLevel the significance level
213 * @return the anomaly probability
215 private static double getStatsTest(final List<Double> values, final double significanceLevel) {
216 if (isAllEqual(values)) {
219 // the targeted value or the last value
220 final double currentV = values.get(values.size() - 1);
221 Double[] lvaluesCopy = values.toArray(new Double[values.size()]);
222 Arrays.sort(lvaluesCopy); // takes ~40% of method time
224 double mean = getMean(lvaluesCopy);
225 // get the test value: val
226 double val = getV(lvaluesCopy, mean, true);
227 // get the p value for the test value
228 double pvalue = getPValue(lvaluesCopy, val, mean); // takes approx 25% of method time
230 // check the critical level
231 while (pvalue < significanceLevel) { // takes approx 20% of method time
232 // the score value as the anomaly probability
233 final double score = (significanceLevel - pvalue) / significanceLevel;
234 if (Double.compare(val, currentV) == 0) {
237 // do the critical check again for the left values
238 lvaluesCopy = removevalue(lvaluesCopy, val);
239 if (isAllEqual(lvaluesCopy)) {
243 mean = getMean(lvaluesCopy);
244 val = getV(lvaluesCopy, mean, true);
245 pvalue = getPValue(lvaluesCopy, val, mean);
251 * Get the test value based on mean from sorted values.
253 * @param lvalues the l values
254 * @param mean the mean
255 * @param maxValueOnly : only the max extreme value will be tested
256 * @return the value to be tested
258 private static double getV(final Double[] lvalues, final double mean, final boolean maxValueOnly) {
259 double val = lvalues[lvalues.length - 1];
260 // max value as the extreme value
264 // check the extreme side
265 if ((val - mean) < (mean - lvalues[0])) {
272 * calculate the P value for the t distribution.
274 * @param lvalues the l values
275 * @param val the value
276 * @param mean the mean
277 * @return the p value
279 private static double getPValue(final Double[] lvalues, final double val, final double mean) {
281 final double z = FastMath.abs(val - mean) / getStdDev(lvalues, mean);
283 final double n = lvalues.length;
284 final double s = (z * z * n * (2.0 - n)) / (z * z * n - (n - 1.0) * (n - 1.0));
285 final double t = FastMath.sqrt(s);
286 // default p value = 0
288 if (!Double.isNaN(t)) {
289 // t distribution with n-2 degrees of freedom
290 final TDistribution tDist = new TDistribution(n - 2);
291 pvalue = n * (1.0 - tDist.cumulativeProbability(t));
292 // set max pvalue = 1
293 pvalue = pvalue > 1.0 ? 1.0 : pvalue;
299 * Some utility methods
301 // exponential = 2(n+1)
302 private static final double EMA_EXPONENT = 2.0 / (7.0 + 1.0);
303 private static final double EMA_EXPONENT_1 = (1.0 - EMA_EXPONENT);
306 * exponential moving average.
308 * @param value the value
309 * @param lastForecast the last forecast
312 private static double expMovingAverage(final double value, final double lastForecast) {
313 return (value * EMA_EXPONENT) + (lastForecast * EMA_EXPONENT_1);
317 * Remove the first occurrence of the value val from the array.
319 * @param lvalues the l values
320 * @param val the value
321 * @return the double[]
323 private static Double[] removevalue(final Double[] lvalues, final double val) {
324 for (int i = 0; i < lvalues.length; i++) {
325 if (Double.compare(lvalues[i], val) == 0) {
326 final Double[] ret = new Double[lvalues.length - 1];
327 System.arraycopy(lvalues, 0, ret, 0, i);
328 System.arraycopy(lvalues, i + 1, ret, i, lvalues.length - i - 1);
336 * get mean value of double list.
338 * @param lvalues the l values
341 private static double getMean(final Double[] lvalues) {
343 for (final double d : lvalues) {
347 return sum / lvalues.length;
351 * get standard deviation of double list.
353 * @param lvalues the l values
354 * @param mean the mean
357 private static double getStdDev(final Double[] lvalues, final double mean) {
359 for (final double d : lvalues) {
360 temp += (mean - d) * (mean - d);
362 return FastMath.sqrt(temp / lvalues.length);
366 * Chop head off list to make it length max .
368 * @param list the list to chop
369 * @param max the max size
371 private static void listSizeControl(final List<?> list, final int max) {
372 final int k = list.size();
374 // Chop the head off the list.
375 list.subList(0, k - max).clear();
380 * return true if all values are equal.
382 * @param lvalues the l values
383 * @return true, if checks if is all equal
385 private static boolean isAllEqual(final List<Double> lvalues) {
386 final double first = lvalues.get(0);
387 for (final Double d : lvalues) {
388 if (Double.compare(d, first) != 0) {
396 * return true if all values are equal.
398 * @param lvalues the l values
399 * @return true, if checks if is all equal
401 private static boolean isAllEqual(final Double[] lvalues) {
402 final double first = lvalues[0];
403 for (final Double d : lvalues) {
404 if (Double.compare(d, first) != 0) {