[INTEGRATION] Add NF simulator documentation in read the docs
[integration.git] / docs / docs_vFW_CNF_CDS.rst
1 .. This work is licensed under a Creative Commons Attribution 4.0 International License.
2 .. http://creativecommons.org/licenses/by/4.0
3 .. Copyright 2020 ONAP
4
5 .. _docs_vFW_CNF_CDS:
6
7 :orphan:
8
9 vFirewall CNF Use Case
10 ----------------------
11
12 Source files
13 ~~~~~~~~~~~~
14 - Heat/Helm/CDS models: `vFW_CNF_CDS Model`_
15 - Automation Scripts: `vFW_CNF_CDS Automation`_
16
17 Description
18 ~~~~~~~~~~~
19 This use case is a combination of `vFW CDS Dublin`_ and `vFW EDGEX K8S`_ use cases. The aim is to continue improving Kubernetes based Network Functions (a.k.a CNF) support in ONAP. Use case continues where `vFW EDGEX K8S`_ left and brings CDS support into picture like `vFW CDS Dublin`_ did for the old vFW Use case. Predecessor use case is also documented here `vFW EDGEX K8S In ONAP Wiki`_.
20
21 This use case shows how to onboard helm packages and to instantiate them with help of ONAP. Following improvements were made in the vFW CNF Use Case:
22
23 - vFW Kubernetes Helm charts support overrides (previously mostly hardcoded values)
24 - SDC accepts Onboarding Package with many helm packages what allows to keep decomposition of service instance similar to `vFW CDS Dublin`_
25 - Compared to `vFW EDGEX K8S`_ use case **MACRO** workflow in SO is used instead of VNF a'la carte workflow
26 - No VNF data preloading used, instead resource-assignment feature of CDS is used
27 - CDS is used to resolve instantiation time parameters (Helm overrides)
28   * IP addresses with IPAM
29   * Unique names for resources with ONAP naming service
30   * CDS is used to create and upload **multicloud/k8s profile** as part of instantiation flow
31 - Combined all models (Heat, Helm, CBA) in to same git repo and a created single onboarding package `vFW_CNF_CDS Model`_
32 - Use case does not contain Closed Loop part of the vFW demo.
33
34 All changes to related ONAP components and Use Case can be found in the following tickets:
35
36 - `REQ-182`_
37 - `REQ-341`_
38
39 **Since Guilin ONAP supports Helm packages as a native onboarding artifacts and SO natively orchestrates Helm packages what brings significant advantages in the future. Also since this release ONAP has first mechanisms for monitoring of the status of deployed CNF resources**.
40
41 The vFW CNF Use Case
42 ~~~~~~~~~~~~~~~~~~~~
43 The vFW CNF CDS use case shows how to instantiate multiple CNF instances in similar way as VNFs bringing CNFs closer to first class citizens in ONAP.
44
45 One of the biggest practical change compared to the old demos (any ONAP demo) is that whole network function content (user provided content) is collected to one place and more importantly into git repository (`vFW_CNF_CDS Model`_) that provides version control (that is pretty important thing). That is very basic thing but unfortunately this is a common problem when running any ONAP demo and trying to find all content from many different git repositories and even some files only in ONAP wiki.
46
47 Demo git directory has also `Data Dictionary`_ file (CDS model time resource) included.
48
49 Another founding idea from the start was to provide complete content in single onboarding package available directly from that git repository. Not any revolutionary idea as that's the official package format ONAP supports and all content supposed to be in that same package for single service regardless of the models and closed loops and configurations etc.
50
51 Following table describes all the source models to which this demo is based on.
52
53 ===============  =================       ===========
54 Model            Git reference           Description
55 ---------------  -----------------       -----------
56 Heat             `vFW_NextGen`_          Heat templates used in original vFW demo but split into multiple vf-modules
57 Helm             `vFW_Helm Model`_       Helm templates used in `vFW EDGEX K8S`_ demo
58 CDS model        `vFW CBA Model`_        CDS CBA model used in `vFW CDS Dublin`_ demo
59 ===============  =================       ===========
60
61 .. note::  Since the Guilin release `vFW_CNF_CDS Model`_ contains sources that allow to model and instantiate CNF with VNF/Heat orchestration approach (Frankfurt) and with native Helm orchestration approach. Please follow README.txt description and further documentation here to generate and select appropriate onboarding package which will leverage appropriate SO orchestration path.
62
63 Modeling Onboarding Package/Helm
64 ................................
65
66 The starting point for this demo was Helm package containing one Kubernetes application, see `vFW_Helm Model`_. In this demo we decided to follow SDC/SO vf-module concept the same way as original vFW demo was split into multiple vf-modules instead of one (`vFW_NextGen`_). The same way we splitted Helm version of vFW into multiple Helm packages each matching one dedicated vf-module.
67
68 The Guilin version of the `vFW_CNF_CDS Model`_ contains files required to create **VSP onboarding packages in two formats**: the **Dummy Heat** (available in Frankfurt release already) one that considers association of each Helm package with dummy heat templates and the **Native Helm** one where each Helm package is standalone and is natively understood in consequence by SO. For both variants of VSP Helm packages are matched to the vf-module concept, so basically each Helm application after instantiation is visible to ONAP as a separate vf-module. The chosen format for onboarding has **crucial** role in the further orchestration approach applied for Helm package instantiation. The **Dummy Heat** will result with orchestration through the **Openstack Adapter** component of SO while **Native Helm** will result with **CNF Adapter**. Both approaches will result with instantiation of the same CNF, however the **Native Helm** approach will be enhanced in the future releases while **Dummy Heat** approach will become deprecated in the future.
69
70 Produced **Dummy Heat** VSP onboarding package `Creating Onboarding Package`_ format has following MANIFEST file (package_dummy/MANIFEST.json). The Helm package is delivered as CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT package through SDC and SO. Dummy heat templates are matched to Helm packages by the same prefix <vf_module_label> of the file name that for both dummy Heat teamplate and for CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT must be the same, like i.e. *vpg* vf-module in the manifest file below. The name of the CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT artifact is predefined and needs to match the pattern: <vf_module_label>_cloudtech_k8s_charts.tgz. More examples can be found in `Modeling Onboarding Package/Helm`_ section.
71
72 ::
73
74     {
75         "name": "virtualFirewall",
76         "description": "",
77         "data": [
78             {
79                 "file": "CBA.zip",
80                 "type": "CONTROLLER_BLUEPRINT_ARCHIVE"
81             },
82             {
83                 "file": "base_template.yaml",
84                 "type": "HEAT",
85                 "isBase": "true",
86                 "data": [
87                     {
88                         "file": "base_template.env",
89                         "type": "HEAT_ENV"
90                     }
91                 ]
92             },
93             {
94                 "file": "base_template_cloudtech_k8s_charts.tgz",
95                 "type": "CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT"
96             },
97             {
98                 "file": "vfw.yaml",
99                 "type": "HEAT",
100                 "isBase": "false",
101                 "data": [
102                     {
103                         "file": "vfw.env",
104                         "type": "HEAT_ENV"
105                     }
106                 ]
107             },
108             {
109                 "file": "vfw_cloudtech_k8s_charts.tgz",
110                 "type": "CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT"
111             },
112             {
113                 "file": "vpkg.yaml",
114                 "type": "HEAT",
115                 "isBase": "false",
116                 "data": [
117                     {
118                         "file": "vpkg.env",
119                         "type": "HEAT_ENV"
120                     }
121                 ]
122             },
123             {
124                 "file": "vpkg_cloudtech_k8s_charts.tgz",
125                 "type": "CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT"
126             },
127             {
128                 "file": "vsn.yaml",
129                 "type": "HEAT",
130                 "isBase": "false",
131                 "data": [
132                     {
133                         "file": "vsn.env",
134                         "type": "HEAT_ENV"
135                     }
136                 ]
137             },
138             {
139                 "file": "vsn_cloudtech_k8s_charts.tgz",
140                 "type": "CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT"
141             }
142         ]
143     }
144
145 Produced **Native Helm** VSP onboarding package `Creating Onboarding Package`_ format has following MANIFEST file (package_native/MANIFEST.json). The Helm package is delivered as HELM package through SDC and SO. The *isBase* flag of HELM artifact is ignored by SDC but in the manifest one HELM or HEAT artifacts must be defined as isBase = true. If both HEAT and HELM are present in the same manifest file the base one must be always one of HELM artifacts. Moreover, the name of HELM type artifact must match the specified pattern: *helm_<some_name>* and the HEAT type artifacts, if present in the same manifest, cannot contain keyword *helm*. These limitations are a consequence of current limitations of the SDC onboarding and VSP validation engine and will be adresssed in the future releases.
146
147 ::
148
149     {
150         "name": "virtualFirewall",
151         "description": "",
152         "data": [
153             {
154                 "file": "CBA.zip",
155                 "type": "CONTROLLER_BLUEPRINT_ARCHIVE"
156             },
157             {
158                 "file": "helm_base_template.tgz",
159                 "type": "HELM",
160                 "isBase": "true"
161             },
162             {
163                 "file": "helm_vfw.tgz",
164                 "type": "HELM",
165                 "isBase": "false"
166             },
167             {
168                 "file": "helm_vpkg.tgz",
169                 "type": "HELM",
170                 "isBase": "false"
171             },
172             {
173                 "file": "helm_vsn.tgz",
174                 "type": "HELM",
175                 "isBase": "false"
176             }
177         ]
178     }
179
180 .. note::  CDS model (CBA package) is delivered as SDC supported own type CONTROLLER_BLUEPRINT_ARCHIVE but the current limitation of VSP onbarding forces to use the artifact name *CBA.zip* to automaticaly recognize CBA as a CONTROLLER_BLUEPRINT_ARCHIVE.
181
182 CDS Model (CBA)
183 ...............
184
185 Creating CDS model was the core of the use case work and also the most difficult and time consuming part. Current template used by use-case should be easily reusable for anyone. Once CDS GUI will be fully working, we think that CBA development should be much easier. For CBA structure reference, please visit it's documentation page `CDS Documentation`_.
186
187 At first the target was to keep CDS model as close as possible to `vFW_CNF_CDS Model`_ use case model and only add smallest possible changes to enable also k8s usage. That is still the target but in practice model deviated from the original one already and time pressure pushed us to not care about sync. Basically the end result could be possible much streamlined if wanted to be smallest possible to working only for K8S based network functions.
188
189 As K8S application was split into multiple Helm packages to match vf-modules, CBA modeling follows the same and for each vf-module there's own template in CBA package. The list of artifact with the templates is different for **Dummy Heat** and **Native Helm** approach. The second one has artifact names starting with *helm_* prefix, in the same way like names of artifacts in the MANIFEST file of VSP differs. The **Dummy Heat** artifacts' list is following:
190
191 ::
192
193     "artifacts" : {
194       "base_template-template" : {
195         "type" : "artifact-template-velocity",
196         "file" : "Templates/base_template-template.vtl"
197       },
198       "base_template-mapping" : {
199         "type" : "artifact-mapping-resource",
200         "file" : "Templates/base_template-mapping.json"
201       },
202       "vpkg-template" : {
203         "type" : "artifact-template-velocity",
204         "file" : "Templates/vpkg-template.vtl"
205       },
206       "vpkg-mapping" : {
207         "type" : "artifact-mapping-resource",
208         "file" : "Templates/vpkg-mapping.json"
209       },
210       "vfw-template" : {
211         "type" : "artifact-template-velocity",
212         "file" : "Templates/vfw-template.vtl"
213       },
214       "vfw-mapping" : {
215         "type" : "artifact-mapping-resource",
216         "file" : "Templates/vfw-mapping.json"
217       },
218       "vnf-template" : {
219         "type" : "artifact-template-velocity",
220         "file" : "Templates/vnf-template.vtl"
221       },
222       "vnf-mapping" : {
223         "type" : "artifact-mapping-resource",
224         "file" : "Templates/vnf-mapping.json"
225       },
226       "vsn-template" : {
227         "type" : "artifact-template-velocity",
228         "file" : "Templates/vsn-template.vtl"
229       },
230       "vsn-mapping" : {
231         "type" : "artifact-mapping-resource",
232         "file" : "Templates/vsn-mapping.json"
233       }
234     }
235
236 The **Native Helm** artifacts' list is following:
237
238 ::
239
240     "artifacts" : {
241       "helm_base_template-template" : {
242         "type" : "artifact-template-velocity",
243         "file" : "Templates/base_template-template.vtl"
244       },
245       "helm_base_template-mapping" : {
246         "type" : "artifact-mapping-resource",
247         "file" : "Templates/base_template-mapping.json"
248       },
249       "helm_vpkg-template" : {
250         "type" : "artifact-template-velocity",
251         "file" : "Templates/vpkg-template.vtl"
252       },
253       "helm_vpkg-mapping" : {
254         "type" : "artifact-mapping-resource",
255         "file" : "Templates/vpkg-mapping.json"
256       },
257       "helm_vfw-template" : {
258         "type" : "artifact-template-velocity",
259         "file" : "Templates/vfw-template.vtl"
260       },
261       "helm_vfw-mapping" : {
262         "type" : "artifact-mapping-resource",
263         "file" : "Templates/vfw-mapping.json"
264       },
265       "vnf-template" : {
266         "type" : "artifact-template-velocity",
267         "file" : "Templates/vnf-template.vtl"
268       },
269       "vnf-mapping" : {
270         "type" : "artifact-mapping-resource",
271         "file" : "Templates/vnf-mapping.json"
272       },
273       "helm_vsn-template" : {
274         "type" : "artifact-template-velocity",
275         "file" : "Templates/vsn-template.vtl"
276       },
277       "helm_vsn-mapping" : {
278         "type" : "artifact-mapping-resource",
279         "file" : "Templates/vsn-mapping.json"
280       }
281     }
282
283 Only **resource-assignment** workflow of the CBA model is utilized in this demo. If final CBA model contains also **config-deploy** workflow it's there just to keep parity with original vFW CBA (for VMs). Same applies for the related template *Templates/nf-params-template.vtl* and it's mapping file.
284
285 Another advance of the presented use case over solution presented in the Dublin release is possibility of the automatic generation and upload to multicloud/k8s plugin the RB profile content.
286 RB profile can be used to enrich or to modify the content of the original helm package. Profile can be also used to add additional k8s helm templates for helm installation or can be used to
287 modify existing k8s helm templates for each create CNF instance. It opens another level of CNF customization, much more than customization of helm package with override values.
288
289 ::
290
291   ---
292   version: v1
293   type:
294     values: “override_values.yaml”
295     configresource:
296       - filepath: resources/deployment.yaml
297         chartpath: templates/deployment.yaml
298
299
300 Above we have exemplary manifest file of the RB profile. Since Frankfurt *override_values.yaml* file does not need to be used as instantiation values are passed to the plugin over Instance API of k8s plugin. In the example, profile contains additional k8s helm template which will be added on demand to the helm package during its installation. In our case, depending on the SO instantiation request input parameters, vPGN helm package can be enriched with additional ssh service. Such service will be dynamically added to the profile by CDS and later on CDS will upload whole custom RB profile to multicloud/k8s plugin.
301
302 In order to support generation and upload of profile, our vFW CBA model has enhanced **resource-assignment** workflow which contains additional step: **profile-upload**. It leverages dedicated functionality introduced in Guilin release that can be used to upload predefined profile or to generate and upload content of the profile with Velocity templating mechanism.
303
304 ::
305
306     "resource-assignment": {
307         "steps": {
308             "resource-assignment": {
309                 "description": "Resource Assign Workflow",
310                 "target": "resource-assignment",
311                 "activities": [
312                     {
313                         "call_operation": "ResourceResolutionComponent.process"
314                     }
315                 ],
316                 "on_success": [
317                     "profile-upload"
318                 ]
319             },
320             "profile-upload": {
321                 "description": "Generate and upload K8s Profile",
322                 "target": "k8s-profile-upload",
323                 "activities": [
324                     {
325                         "call_operation": "ComponentScriptExecutor.process"
326                     }
327                 ]
328             }
329         },
330
331 .. note:: In the Frankfurt reelase profile upload was implementes as a custom Kotlin script included into the CBA. It was responsible for upload of K8S profile into multicloud/k8s plugin. It is still a good example of  the integration of Kotlin scripting into the CBA. For those interested in this functionaliy we recommend to look into the `Frankfurt CBA Definition`_ and `Frankfurt CBA Script`_.
332
333 In our example for vPKG helm package we may select *vfw-cnf-cds-vpkg-profile* profile that is included into CBA as a folder. Profile generation step uses Velocity templates processing embedded CDS functionality on its basis ssh port number (specified in the SO request as *vpg-management-port*).
334
335 ::
336
337     {
338         "name": "vpg-management-port",
339         "property": {
340             "description": "The number of node port for ssh service of vpg",
341             "type": "integer",
342             "default": "0"
343         },
344         "input-param": false,
345         "dictionary-name": "vpg-management-port",
346         "dictionary-source": "default",
347         "dependencies": []
348     }
349
350 *vpg-management-port* can be included directly into the helm template and such template will be included into vPKG helm package in time of its instantiation.
351
352 ::
353
354   apiVersion: v1
355   kind: Service
356   metadata:
357     name: {{ .Values.vpg_name_0 }}-ssh-access
358     labels:
359       vnf-name: {{ .Values.vnf_name }}
360       vf-module-name: {{ .Values.vpg_name_0 }}
361       release: {{ .Release.Name }}
362       chart: {{ .Chart.Name }}
363   spec:
364     type: NodePort
365     ports:
366       - port: 22
367         nodePort: ${vpg-management-port}
368     selector:
369       vf-module-name: {{ .Values.vpg_name_0 }}
370       release: {{ .Release.Name }}
371       chart: {{ .Chart.Name }}
372
373
374 The mechanism of profile generation and upload requires specific node teamplate in the CBA definition. In our case it comes with the declaration of two profiles: one static *vfw-cnf-cds-base-profile* in a form of an archive and the second complex *vfw-cnf-cds-vpkg-profile* in a form of a folder for processing and profile generation.
375
376 ::
377
378     "k8s-profile-upload": {
379         "type": "component-k8s-profile-upload",
380         "interfaces": {
381             "K8sProfileUploadComponent": {
382                 "operations": {
383                     "process": {
384                         "inputs": {
385                             "artifact-prefix-names": {
386                                 "get_input": "template-prefix"
387                             },
388                             "resource-assignment-map": {
389                                 "get_attribute": [
390                                     "resource-assignment",
391                                     "assignment-map"
392                                 ]
393                             }
394                         }
395                     }
396                 }
397             }
398         },
399         "artifacts": {
400             "vfw-cnf-cds-base-profile": {
401                 "type": "artifact-k8sprofile-content",
402                 "file": "Templates/k8s-profiles/vfw-cnf-cds-base-profile.tar.gz"
403             },
404             "vfw-cnf-cds-vpkg-profile": {
405                 "type": "artifact-k8sprofile-content",
406                 "file": "Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile"
407             },
408             "vfw-cnf-cds-vpkg-profile-mapping": {
409                 "type": "artifact-mapping-resource",
410                 "file": "Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/ssh-service-mapping.json"
411             }
412         }
413     }
414
415 Artifact file determines a place of the static profile or the content of the complex profile. In the latter case we need a pair of profile folder and mappimng file with a declaration of the parameters that CDS needs to resolve first, before the Velocity templating is applied to the .vtl files present in the profile content. After Velocity templating the .vtl extensions will be dropped from the file names. The embedded mechanism will include in the profile only files present in the profile MANIFEST file that needs to contain the list of final names of the files to be included into the profile. The figure below shows the idea of profile templating.
416
417 .. figure:: files/vFW_CNF_CDS/profile-templating.png
418    :align: center
419
420    K8s Profile Templating
421
422 SO requires for instantiation name of the profile in the parameter: *k8s-rb-profile-name*. The *component-k8s-profile-upload* that stands behind the profile uploading mechanism has input parameters that can be passed directly (checked in the first order) or can be taken from the *resource-assignment-map* parameter which can be a result of associated *component-resource-resolution* result, like in our case their values are resolved on vf-module level resource assignment. The *component-k8s-profile-upload* inputs are following:
423
424 - k8s-rb-profile-name – (mandatory) the name of the profile under which it will be created in k8s plugin. Other parameters are required only when profile must be uploaded
425 - k8s-rb-definition-name – the name under which RB definition was created - **VF Module Model Invariant ID** in ONAP
426 - k8s-rb-definition-version – the version of created RB definition name - **VF Module Model Version ID**  in ONAP
427 - k8s-rb-profile-namespace – the k8s namespace name associated with profile being created
428 - k8s-rb-profile-source – the source of profile content - name of the artifact of the profile
429 - resource-assignment-map – result of the associated resource assignment step
430 - artifact-prefix-names – (mandatory) the list of artifact prefixes like for resource-assigment step
431
432 In the SO request user can pass parameter of name *k8s-rb-profile-name* which in our case may have value: *vfw-cnf-cds-base-profile*, *vfw-cnf-cds-vpkg-profile* or *default*. The *default* profile doesn’t contain any content inside and allows instantiation of CNF without the need to define and upload any additional profiles. *vfw-cnf-cds-vpkg-profile* has been prepared to test instantiation of the second modified vFW CNF instance `Second Service Instance Instantiation`_.
433
434 K8splugin allows to specify override parameters (similar to --set behavior of helm client) to instantiated resource bundles. This allows for providing dynamic parameters to instantiated resources without the need to create new profiles for this purpose and should be used with *default* profile but may be used also with custom profiles. The overall flow of helm overrides parameters processing is visible on following figure. When *rb definition* (helm package) is being instantiated for specified *rb profile* K8splugin combines override values from the helm pakage, *rb profile* and from the instantiation request - in the respective order. It means that the some from instantiation request (SO request input or CDS resource assignement result) has a precedence over the value from the *rb profile* and value from the *rb profile* has a precedence over the helm package default override value. Similarly, profile can contain resource files that may extend or ammend the existing files for the original helm package content.
435
436 .. figure:: files/vFW_CNF_CDS/helm-overrides.png
437    :align: center
438
439    The overall flow of helm data processing
440
441 Both profile content (4) like the instantiation request values (5) can be generated during the resource assignment process according to its definition for CBA associated with helm package. CBA may generate i.e. names, IP addresses, ports and can use this information to produce the *rb-profile* (3) content. Finally, all three sources of override values, temnplates and additional resources files are merged together (6) by K8splugin in the order exaplained before.
442
443 .. figure:: files/vFW_CNF_CDS/helm-overrides-steps.png
444    :align: center
445
446    The steps of processing of helm data with help of CDS
447
448 Finally, `Data Dictionary`_ is also included into demo git directory, re-modeling and making changes into model utilizing CDS model time / runtime is easier as used DD is also known. 
449
450 .. note:: The CBA for this use case is already enriched and there is no need to perform enrichment process for it. It is also automatically uploaded into CDS in time of the model distribution from the SDC.
451
452 Instantiation Overview
453 ----------------------
454
455 .. note:: Since Guilin release use case is equipped with automated method **<AUTOMATED>** with python scripts to replace Postman method **<MANUAL>** used in Frankfurt. Nevertheless, Postman collection is good to understand the entire process. If a user selects to follow Postman collection, then automation scripts **must not** be used. **For the entire process use only scripts or only Postman collection**. Both options are described in the further steps of this instruction.
456
457 The figure below shows all the interactions that take place during vFW CNF instantiation. It's not describing flow of actions (ordered steps) but rather component dependencies.
458
459 .. figure:: files/vFW_CNF_CDS/Instantiation_topology.png
460    :align: center
461
462    vFW CNF CDS Use Case Runtime interactions.
463
464 PART 1 - ONAP Installation
465 ~~~~~~~~~~~~~~~~~~~~~~~~~~
466
467 1-1 Deployment components
468 .........................
469
470 In order to run the vFW_CNF_CDS use case, we need ONAP Guilin Release (or later) with at least following components:
471
472 =======================================================   ===========
473 ONAP Component name                                       Describtion
474 -------------------------------------------------------   -----------
475 AAI                                                       Required for Inventory Cloud Owner, Customer, Owning Entity, Service, Generic VNF, VF Module
476 SDC                                                       VSP, VF and Service Modeling of the CNF
477 DMAAP                                                     Distribution of the onboarding package including CBA to all ONAP components
478 SO                                                        Requires for Macro Orchestration using the generic building blocks
479 CDS                                                       Resolution of cloud parameters including Helm override parameters for the CNF. Creation of the multicloud/k8s profile for CNF instantion.
480 SDNC (needs to include netbox and Naming Generation mS)   Provides GENERIC-RESOURCE-API for cloud Instantiation orchestration via CDS.
481 Policy                                                    Used to Store Naming Policy
482 AAF                                                       Used for Authentication and Authorization of requests
483 Portal                                                    Required to access SDC.
484 MSB                                                       Exposes multicloud interfaces used by SO.
485 Multicloud                                                K8S plugin part used to pass SO instantiation requests to external Kubernetes cloud region.
486 Contrib                                                   Chart containing multiple external components. Out of those, we only use Netbox utility in this use-case for IPAM
487 Robot                                                     Optional. Can be used for running automated tasks, like provisioning cloud customer, cloud region, service subscription, etc ..
488 Shared Cassandra DB                                       Used as a shared storage for ONAP components that rely on Cassandra DB, like AAI
489 Shared Maria DB                                           Used as a shared storage for ONAP components that rely on Maria DB, like SDNC, and SO
490 =======================================================   ===========
491
492 1-2 Deployment
493 ..............
494
495 In order to deploy such an instance, follow the `ONAP Deployment Guide`_
496
497 As we can see from the guide, we can use an override file that helps us customize our ONAP deployment, without modifying the OOM Folder, so you can download this override file here, that includes the necessary components mentioned above.
498
499 **override.yaml** file where enabled: true is set for each component needed in demo (by default all components are disabled).
500
501 ::
502
503   aai:
504     enabled: true
505   aaf:
506     enabled: true
507   cassandra:
508     enabled: true
509   cds:
510     enabled: true
511   contrib:
512     enabled: true
513   dmaap:
514     enabled: true
515   mariadb-galera:
516     enabled: true
517   msb:
518     enabled: true
519   multicloud:
520     enabled: true
521   policy:
522     enabled: true
523   portal:
524     enabled: true
525   robot:
526     enabled: true
527   sdc:
528     enabled: true
529   sdnc:
530     enabled: true
531   so:
532     enabled: true
533
534 Then deploy ONAP with Helm with your override file.
535
536 ::
537
538     helm deploy onap local/onap --namespace onap -f ~/override.yaml
539
540 In case redeployment needed `Helm Healer`_ could be a faster and convenient way to redeploy.
541
542 ::
543
544     helm-healer.sh -n onap -f ~/override.yaml -s /dockerdata-nfs --delete-all
545
546 Or redeploy (clean re-deploy also data removed) just wanted components (Helm releases), cds in this example.
547
548 ::
549
550     helm-healer.sh -f ~/override.yaml -s /dockerdata-nfs/ -n onap -c onap-cds
551
552 There are many instructions in ONAP wiki how to follow your deployment status and does it succeeded or not, mostly using Robot Health checks. One way we used is to skip the outermost Robot wrapper and use directly ete-k8s.sh to able to select checked components easily. Script is found from OOM git repository *oom/kubernetes/robot/ete-k8s.sh*.
553
554 ::
555
556     {
557     failed=
558     for comp in {aaf,aai,dmaap,msb,multicloud,policy,portal,sdc,sdnc,so}; do
559         if ! ./ete-k8s.sh onap health-$comp; then
560             failed=$failed,$comp
561         fi
562     done
563     if [ -n "$failed" ]; then
564         echo "These components failed: $failed"
565         false
566     else
567         echo "Healthcheck successful"
568     fi
569     }
570
571 And check status of pods, deployments, jobs etc.
572
573 ::
574
575     kubectl -n onap get pods | grep -vie 'completed' -e 'running'
576     kubectl -n onap get deploy,sts,jobs
577
578
579 1-3 Post Deployment
580 ...................
581
582 After completing the first part above, we should have a functional ONAP deployment for the Guilin Release.
583
584 We will need to apply a few modifications to the deployed ONAP Guilin instance in order to run the use case.
585
586 Retrieving logins and passwords of ONAP components
587 ++++++++++++++++++++++++++++++++++++++++++++++++++
588
589 Since Frankfurt release hardcoded passwords were mostly removed and it is possible to configure passwords of ONAP components in time of their installation. In order to retrieve these passwords with associated logins it is required to get them with kubectl. Below is the procedure on mariadb-galera DB component example.
590
591 ::
592
593     kubectl get secret `kubectl get secrets | grep mariadb-galera-db-root-password | awk '{print $1}'` -o jsonpath="{.data.login}" | base64 --decode
594     kubectl get secret `kubectl get secrets | grep mariadb-galera-db-root-password | awk '{print $1}'` -o jsonpath="{.data.password}" | base64 --decode
595
596 In this case login is empty as the secret is dedicated to root user.
597
598
599 Postman collection setup
600 ++++++++++++++++++++++++
601
602 In this demo we have on purpose created all manual ONAP preparation steps (which in real life are automated) by using Postman so it will be clear what exactly is needed. Some of the steps like AAI population is automated by Robot scripts in other ONAP demos (**./demo-k8s.sh onap init**) and Robot script could be used for many parts also in this demo.
603
604 Postman collection is used also to trigger instantiation using SO APIs.
605
606 Following steps are needed to setup Postman:
607
608 - Import this Postman collection zip
609
610   :download:`Postman collection <files/vFW_CNF_CDS/postman.zip>`
611
612 - Extract the zip and import Postman collection into Postman. Environment file is provided for reference, it's better to create own environment on your own providing variables as listed in next chapter.
613     - `vFW_CNF_CDS.postman_collection.json`
614     - `vFW_CNF_CDS.postman_environment.json`
615
616 - For use case debugging purposes to get Kubernetes cluster external access to SO CatalogDB (GET operations only), modify SO CatalogDB service to NodePort instead of ClusterIP. You may also create separate own NodePort if you wish, but here we have just edited directly the service with kubectl.
617
618 ::
619
620     kubectl -n onap edit svc so-catalog-db-adapter
621          - .spec.type: ClusterIP
622          + .spec.type: NodePort
623          + .spec.ports[0].nodePort: 30120
624
625 .. note::  The port number 30120 is used in included Postman collection
626
627 - You may also want to inspect after SDC distribution if CBA has been correctly delivered to CDS. In order to do it, there are created relevant calls later described in doc, however CDS since Frankfurt doesn't expose blueprints-processor's service as NodePort. This is OPTIONAL but if you'd like to use these calls later, you need to expose service in similar way as so-catalog-db-adapter above:
628
629 ::
630
631     kubectl edit -n onap svc cds-blueprints-processor-http
632           - .spec.type: ClusterIP
633           + .spec.type: NodePort
634           + .spec.ports[0].nodePort: 30499
635
636 .. note::  The port number 30499 is used in included Postman collection
637
638 **Postman variables:**
639
640 Most of the Postman variables are automated by Postman scripts and environment file provided, but there are few mandatory variables to fill by user.
641
642 =====================  ===================
643 Variable               Description
644 ---------------------  -------------------
645 k8s                    ONAP Kubernetes host
646 sdnc_port              port of sdnc service for accessing MDSAL
647 service-name           name of service as defined in SDC
648 service-version        version of service defined in SDC (if service wasn't updated, it should be set to "1.0")
649 service-instance-name  name of instantiated service (if ending with -{num}, will be autoincremented for each instantiation request)
650 =====================  ===================
651
652 You can get the sdnc_port value with
653
654 ::
655
656     kubectl -n onap get svc sdnc -o json | jq '.spec.ports[]|select(.port==8282).nodePort'
657
658 Automation Environment Setup
659 ............................
660
661 Whole content of this use case is stored into single git repository and it contains both the required onboarding information as well as automation scripts for onboarding and instantiation of the use case.
662
663 ::
664
665   git clone --single-branch --branch guilin "https://gerrit.onap.org/r/demo"
666   cd demo/heat/vFW_CNF_CDS/templates
667
668 In order to prepare environment for onboarding and instantiation of the use case make sure you have *git*, *make*, *helm* and *pipenv* applications installed.
669
670 The automation scripts are based on `Python SDK`_ and are adopted to automate process of service onboarding, instantiation, deletion and cloud region registration. To configure them for further use:
671
672 ::
673
674   cd demo/heat/vFW_CNF_CDS/automation
675
676 1. Install required packages with
677 ::
678
679     pipenv pipenv install
680
681 2. Run virtual python environment
682 ::
683
684     pipenv shell --fancy
685
686 3. Add kubeconfig files, one for ONAP cluster, and one for k8s cluster that will host vFW
687
688 .. note:: Both files can be configured after creation of k8s cluster for vFW instance `2-1 Installation of Managed Kubernetes`_. Make sure that they have configured external IP address properly. If any cluster uses self signed certificates set also *insecure-skip-tls-verify* flag in the config file.
689
690 - artifacts/cluster_kubeconfig - IP address must be reachable by ONAP pods, especially *mutlicloud-k8s* pod
691
692 - artifacts/onap_kubeconfig - IP address must be reachable by automation scripts
693
694 4. Modify config.py file
695
696 - NATIVE - when enabled **Native Helm** path will be used, otherwise **Dummy Heat** path will be used
697 - CLOUD_REGION - name of your k8s cluster from ONAP perspective
698 - GLOBAL_CUSTOMER_ID - identifier of customer in ONAP
699 - VENDOR - name of the Vendor in ONAP
700 - SERVICENAME - **Name of your service model in SDC**
701 - CUSTOMER_RESOURCE_DEFINITIONS - add list of CRDs to be installed on non KUD k8s cluster - should be used ony to use some non-KUD cluster like i.e. ONAP one to test instantiation of Helm package. For KUD should be empty list
702
703 .. note:: For automation script it is necessary to modify only NATIVE and SERVICENAME constants. Other constants may be modified if needed.
704
705 AAI
706 ...
707
708 Some basic entries are needed in ONAP AAI. These entries are needed ones per onap installation and do not need to be repeated when running multiple demos based on same definitions.
709
710 Create all these entries into AAI in this order. Postman collection provided in this demo can be used for creating each entry.
711
712 **<MANUAL>**
713 ::
714
715     Postman -> Initial ONAP setup -> Create
716
717 - Create Customer
718 - Create Owning-entity
719 - Create Platform
720 - Create Project
721 - Create Line Of Business
722
723 Corresponding GET operations in "Check" folder in Postman can be used to verify entries created. Postman collection also includes some code that tests/verifies some basic issues e.g. gives error if entry already exists.
724
725 **<AUTOMATED>**
726
727 This step is performed jointly with onboarding step `3-1 Onboarding`_
728
729 Naming Policy
730 +++++++++++++
731
732 Naming policy is needed to generate unique names for all instance time resources that are wanted to be modeled in the way naming policy is used. Those are normally VNF, VNFC and VF-module names, network names etc. Naming is general ONAP feature and not limited to this use case.
733
734 This usecase leverages default ONAP naming policy - "SDNC_Policy.ONAP_NF_NAMING_TIMESTAMP".
735 To check that the naming policy is created and pushed OK, we can run the command below from inside any ONAP pod.
736
737 ::
738
739   curl --silent -k --user 'healthcheck:zb!XztG34' -X GET "https://policy-api:6969/policy/api/v1/policytypes/onap.policies.Naming/versions/1.0.0/policies/SDNC_Policy.ONAP_NF_NAMING_TIMESTAMP/versions/1.0.0"
740
741 .. note:: Please change credentials respectively to your installation. The required credentials can be retrieved with instruction `Retrieving logins and passwords of ONAP components`_
742
743 PART 2 - Installation of managed Kubernetes cluster
744 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
745
746 In this demo the target cloud region is a Kubernetes cluster of your choice basically just like with Openstack. ONAP platform is a bit too much hard wired to Openstack and it's visible in many demos.
747
748 2-1 Installation of Managed Kubernetes
749 ......................................
750
751 In this demo we use Kubernetes deployment used by ONAP multicloud/k8s team to test their plugin features see `KUD github`_. There's also some outdated instructions in ONAP wiki `KUD in Wiki`_.
752
753 KUD deployment is fully automated and also used in ONAP's CI/CD to automatically verify all `Multicloud k8s gerrit`_ commits (see `KUD Jenkins ci/cd verification`_) and that's quite good (and rare) level of automated integration testing in ONAP. KUD deployemnt is used as it's installation is automated and it also includes bunch of Kubernetes plugins used to tests various k8s plugin features. In addition to deployement, KUD repository also contains test scripts to automatically test multicloud/k8s plugin features. Those scripts are run in CI/CD.
754
755 See `KUD subproject in github`_ for a list of additional plugins this Kubernetes deployment has. In this demo the tested CNF is dependent on following plugins:
756
757 - ovn4nfv
758 - Multus
759 - Virtlet
760
761 Follow instructions in `KUD github`_ and install target Kubernetes cluster in your favorite machine(s), simplest being just one machine. Your cluster nodes(s) needs to be accessible from ONAP Kuberenetes nodes. Make sure your installed *pip* is of **version < 21.0**. Version 21 do not support python 2.7 that is used in *aio.sh* script. Also to avoid performance problems of your k8s cluster make sure you install only necessary plugins and before running *aio.sh* script execute following command
762 ::
763
764     export KUD_ADDONS="virtlet ovn4nfv"
765
766 2-2 Cloud Registration
767 ......................
768
769 Managed Kubernetes cluster is registered here into ONAP as one cloud region. This obviously is done just one time for this particular cloud. Cloud registration information is kept in AAI.
770
771 **<MANUAL>**
772
773 Postman collection have folder/entry for each step. Execute in this order.
774 ::
775
776     Postman -> K8s Cloud Region Registration -> Create
777
778 - Create Complex
779 - Create Cloud Region
780 - Create Complex-Cloud Region Relationship
781 - Create Service
782 - Create Service Subscription
783 - Create Cloud Tenant
784 - Create Availability Zone
785 - Upload Connectivity Info
786
787 .. note:: For "Upload Connectivity Info" call you need to provide kubeconfig file of existing KUD cluster. You can find that kubeconfig on deployed KUD in the directory `~/.kube/config` and this file can be easily copied e.g. via SCP. Please ensure that kubeconfig contains external IP of K8s cluster in kubeconfig and correct it, if it's not.
788
789 SO database needs to be (manually) modified for SO to know that this particular cloud region is to be handled by multicloud. Values we insert needs to obviously match to the ones we populated into AAI.
790
791 .. note:: Please change credentials respectively to your installation. The required credentials can be retrieved with instruction `Retrieving logins and passwords of ONAP components`_
792
793 ::
794
795     kubectl -n onap exec onap-mariadb-galera-0 -it -- mysql -uroot -psecretpassword -D catalogdb
796         select * from cloud_sites;
797         insert into cloud_sites(ID, REGION_ID, IDENTITY_SERVICE_ID, CLOUD_VERSION, CLLI, ORCHESTRATOR) values("k8sregionfour", "k8sregionfour", "DEFAULT_KEYSTONE", "2.5", "clli2", "multicloud");
798         select * from cloud_sites;
799         exit
800
801 .. note:: The configuration of the new k8s cloud site is documented also here `K8s cloud site config`_
802
803 **<AUTOMATED>**
804
805 Please copy the kubeconfig file of existing KUD cluster to automation/artifacts/cluster_kubeconfig location `Automation Environment Setup`_ - step **3**. You can find that kubeconfig on deployed KUD in the directory `~/.kube/config` and this file can be easily copied e.g. via SCP. Please ensure that kubeconfig contains external IP of K8s cluster in kubeconfig and correct it, if it's not.
806
807 ::
808
809     python create_k8s_region.py
810
811 PART 3 - Execution of the Use Case
812 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
813
814 This part contains all the steps to run the use case by using ONAP GUIs, Postman or Python automation scripts.
815
816 Following pictures describe the overall sequential flow of the use case in two scenarios: **Dummy Heat** path (with OpenStack adapter) and **Native Helm** path (with CNF Adapter)
817
818 Dummy Heat CNF Orchestration
819 ............................
820
821 This orchestration method stands on the grounds of Heat template orchestration mechanisms. In SDC onboarding package needs to contains simple Heat templates that are associated with additional Cloud artifacts. SDC distributes Heat templates to SO and Helm packages to K8sPlugin directly. SO orchestrates the Heat templates without any knowledge about their existence, however the OpenStack adater in SO understands k8s region type for which communication over MSB/Mutlicloud is provided - it handles interaction with K8sPlugin for CNF instantiation.
822
823 .. figure:: files/vFW_CNF_CDS/Dummy_Heat_Flow.png
824    :align: center
825
826    vFW CNF CDS Use Case sequence flow for *Dummy Heat* (Frankfurt) path.
827
828 Native Helm CNF Orchestration
829 .............................
830
831 Introduced in the Guilin release CNF orchestration method brings native distribution of Helm packages from SDC and native orchestration of CNFs (Helm packages) with SO. SO leverages CNF adapter to interact with K8sPlugin that takes resposnibility for the communication with k8s clusters. Heat templates are not required in the SDC onboarding package and thanks to the fact that SO knows about Helm package orchestration future synchronization of data between k8s clusters and AAI is possible.
832
833 .. figure:: files/vFW_CNF_CDS/Native_Helm_Flow.png
834    :align: center
835
836    vFW CNF CDS Use Case sequence flow for *Native Helm* (Guilin) path.
837
838 .. warning:: The **Native Helm** path has identified defects in the instantiation process and requires SO images of version 1.7.11 for successfull instantiation of the CNF. Please monitor `SO-3403`_ and `SO-3404`_ tickets to make sure that necessary fixes have been delivered. SO 1.7.11 images were released Dec 24th 2020. Make sure to use them in Your ONAP/Guilin installation.
839
840
841 3-1 Onboarding
842 ..............
843
844 .. note:: Make sure you have performed `Automation Environment Setup`_ steps before following actions here.
845
846 Creating Onboarding Package
847 +++++++++++++++++++++++++++
848
849 Content of the onboarding package can be created with provided Makefile in the *template* folder.
850
851 Complete content of both Onboarding Packages for **Dummy Heat**  and **Native Helm** is packaged to the following VSP onboarding package files:
852
853 - **Dummy Heat** path: **vfw_k8s_demo.zip**
854
855 - **Native Helm** path: **native_vfw_k8s_demo.zip**
856
857 .. note::  Procedure requires *make* and *helm* applications installed
858
859 ::
860
861   git clone --single-branch --branch guilin "https://gerrit.onap.org/r/demo"
862   cd demo/heat/vFW_CNF_CDS/templates
863   make
864
865 The result of make operation execution is following:
866 ::
867
868     make clean
869     make[1]: Entering directory '/mnt/c/Users/advnet/Desktop/SOURCES/demo/heat/vFW_CNF_CDS/templates'
870     rm -rf package_dummy/
871     rm -rf package_native/
872     rm -rf cba_dummy
873     rm -f vfw_k8s_demo.zip
874     rm -f native_vfw_k8s_demo.zip
875     make[1]: Leaving directory '/mnt/c/Users/advnet/Desktop/SOURCES/demo/heat/vFW_CNF_CDS/templates'
876     make all
877     make[1]: Entering directory '/mnt/c/Users/advnet/Desktop/SOURCES/demo/heat/vFW_CNF_CDS/templates'
878     mkdir package_dummy/
879     mkdir package_native/
880     make -C helm
881     make[2]: Entering directory '/mnt/c/Users/advnet/Desktop/SOURCES/demo/heat/vFW_CNF_CDS/templates/helm'
882     rm -f base_template-*.tgz
883     rm -f helm_base_template.tgz
884     rm -f base_template_cloudtech_k8s_charts.tgz
885     helm package base_template
886     Successfully packaged chart and saved it to: /mnt/c/Users/advnet/Desktop/SOURCES/demo/heat/vFW_CNF_CDS/templates/helm/base_template-0.2.0.tgz
887     mv base_template-*.tgz helm_base_template.tgz
888     cp helm_base_template.tgz base_template_cloudtech_k8s_charts.tgz
889     rm -f vpkg-*.tgz
890     rm -f helm_vpkg.tgz
891     rm -f vpkg_cloudtech_k8s_charts.tgz
892     helm package vpkg
893     Successfully packaged chart and saved it to: /mnt/c/Users/advnet/Desktop/SOURCES/demo/heat/vFW_CNF_CDS/templates/helm/vpkg-0.2.0.tgz
894     mv vpkg-*.tgz helm_vpkg.tgz
895     cp helm_vpkg.tgz vpkg_cloudtech_k8s_charts.tgz
896     rm -f vfw-*.tgz
897     rm -f helm_vfw.tgz
898     rm -f vfw_cloudtech_k8s_charts.tgz
899     helm package vfw
900     Successfully packaged chart and saved it to: /mnt/c/Users/advnet/Desktop/SOURCES/demo/heat/vFW_CNF_CDS/templates/helm/vfw-0.2.0.tgz
901     mv vfw-*.tgz helm_vfw.tgz
902     cp helm_vfw.tgz vfw_cloudtech_k8s_charts.tgz
903     rm -f vsn-*.tgz
904     rm -f helm_vsn.tgz
905     rm -f vsn_cloudtech_k8s_charts.tgz
906     helm package vsn
907     Successfully packaged chart and saved it to: /mnt/c/Users/advnet/Desktop/SOURCES/demo/heat/vFW_CNF_CDS/templates/helm/vsn-0.2.0.tgz
908     mv vsn-*.tgz helm_vsn.tgz
909     cp helm_vsn.tgz vsn_cloudtech_k8s_charts.tgz
910     make[2]: Leaving directory '/mnt/c/Users/advnet/Desktop/SOURCES/demo/heat/vFW_CNF_CDS/templates/helm'
911     mv helm/helm_*.tgz package_native/
912     mv helm/*.tgz package_dummy/
913     cp base_dummy/* package_dummy/
914     cp base_native/* package_native/
915     cp -r cba cba_dummy
916     sed -i 's/"helm_/"/g' cba_dummy/Definitions/vFW_CNF_CDS.json
917     cd cba_dummy/ && zip -r CBA.zip . -x pom.xml .idea/\* target/\*
918     adding: Definitions/ (stored 0%)
919     adding: Definitions/artifact_types.json (deflated 69%)
920     adding: Definitions/data_types.json (deflated 88%)
921     adding: Definitions/node_types.json (deflated 90%)
922     adding: Definitions/policy_types.json (stored 0%)
923     adding: Definitions/relationship_types.json (stored 0%)
924     adding: Definitions/resources_definition_types.json (deflated 94%)
925     adding: Definitions/vFW_CNF_CDS.json (deflated 87%)
926     adding: Scripts/ (stored 0%)
927     adding: Scripts/kotlin/ (stored 0%)
928     adding: Scripts/kotlin/README.md (stored 0%)
929     adding: Templates/ (stored 0%)
930     adding: Templates/base_template-mapping.json (deflated 89%)
931     adding: Templates/base_template-template.vtl (deflated 87%)
932     adding: Templates/k8s-profiles/ (stored 0%)
933     adding: Templates/k8s-profiles/vfw-cnf-cds-base-profile.tar.gz (stored 0%)
934     adding: Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/ (stored 0%)
935     adding: Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/manifest.yaml (deflated 35%)
936     adding: Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/override_values.yaml (stored 0%)
937     adding: Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/ssh-service-mapping.json (deflated 51%)
938     adding: Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/ssh-service-template.yaml.vtl (deflated 56%)
939     adding: Templates/nf-params-mapping.json (deflated 88%)
940     adding: Templates/nf-params-template.vtl (deflated 44%)
941     adding: Templates/vfw-mapping.json (deflated 89%)
942     adding: Templates/vfw-template.vtl (deflated 87%)
943     adding: Templates/vnf-mapping.json (deflated 89%)
944     adding: Templates/vnf-template.vtl (deflated 93%)
945     adding: Templates/vpkg-mapping.json (deflated 89%)
946     adding: Templates/vpkg-template.vtl (deflated 87%)
947     adding: Templates/vsn-mapping.json (deflated 89%)
948     adding: Templates/vsn-template.vtl (deflated 87%)
949     adding: TOSCA-Metadata/ (stored 0%)
950     adding: TOSCA-Metadata/TOSCA.meta (deflated 37%)
951     cd cba/ && zip -r CBA.zip . -x pom.xml .idea/\* target/\*
952     adding: Definitions/ (stored 0%)
953     adding: Definitions/artifact_types.json (deflated 69%)
954     adding: Definitions/data_types.json (deflated 88%)
955     adding: Definitions/node_types.json (deflated 90%)
956     adding: Definitions/policy_types.json (stored 0%)
957     adding: Definitions/relationship_types.json (stored 0%)
958     adding: Definitions/resources_definition_types.json (deflated 94%)
959     adding: Definitions/vFW_CNF_CDS.json (deflated 87%)
960     adding: Scripts/ (stored 0%)
961     adding: Scripts/kotlin/ (stored 0%)
962     adding: Scripts/kotlin/README.md (stored 0%)
963     adding: Templates/ (stored 0%)
964     adding: Templates/base_template-mapping.json (deflated 89%)
965     adding: Templates/base_template-template.vtl (deflated 87%)
966     adding: Templates/k8s-profiles/ (stored 0%)
967     adding: Templates/k8s-profiles/vfw-cnf-cds-base-profile.tar.gz (stored 0%)
968     adding: Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/ (stored 0%)
969     adding: Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/manifest.yaml (deflated 35%)
970     adding: Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/override_values.yaml (stored 0%)
971     adding: Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/ssh-service-mapping.json (deflated 51%)
972     adding: Templates/k8s-profiles/vfw-cnf-cds-vpkg-profile/ssh-service-template.yaml.vtl (deflated 56%)
973     adding: Templates/nf-params-mapping.json (deflated 88%)
974     adding: Templates/nf-params-template.vtl (deflated 44%)
975     adding: Templates/vfw-mapping.json (deflated 89%)
976     adding: Templates/vfw-template.vtl (deflated 87%)
977     adding: Templates/vnf-mapping.json (deflated 89%)
978     adding: Templates/vnf-template.vtl (deflated 93%)
979     adding: Templates/vpkg-mapping.json (deflated 89%)
980     adding: Templates/vpkg-template.vtl (deflated 87%)
981     adding: Templates/vsn-mapping.json (deflated 89%)
982     adding: Templates/vsn-template.vtl (deflated 87%)
983     adding: TOSCA-Metadata/ (stored 0%)
984     adding: TOSCA-Metadata/TOSCA.meta (deflated 37%)
985     mv cba/CBA.zip package_native/
986     mv cba_dummy/CBA.zip package_dummy/
987     cd package_dummy/ && zip -r vfw_k8s_demo.zip .
988     adding: base_template.env (deflated 22%)
989     adding: base_template.yaml (deflated 59%)
990     adding: base_template_cloudtech_k8s_charts.tgz (stored 0%)
991     adding: CBA.zip (stored 0%)
992     adding: MANIFEST.json (deflated 84%)
993     adding: vfw.env (deflated 23%)
994     adding: vfw.yaml (deflated 60%)
995     adding: vfw_cloudtech_k8s_charts.tgz (stored 0%)
996     adding: vpkg.env (deflated 13%)
997     adding: vpkg.yaml (deflated 59%)
998     adding: vpkg_cloudtech_k8s_charts.tgz (stored 0%)
999     adding: vsn.env (deflated 15%)
1000     adding: vsn.yaml (deflated 59%)
1001     adding: vsn_cloudtech_k8s_charts.tgz (stored 0%)
1002     cd package_native/ && zip -r native_vfw_k8s_demo.zip .
1003     adding: CBA.zip (stored 0%)
1004     adding: helm_base_template.tgz (stored 0%)
1005     adding: helm_vfw.tgz (stored 0%)
1006     adding: helm_vpkg.tgz (stored 0%)
1007     adding: helm_vsn.tgz (stored 0%)
1008     adding: MANIFEST.json (deflated 71%)
1009     mv package_dummy/vfw_k8s_demo.zip .
1010     mv package_native/native_vfw_k8s_demo.zip .
1011   $
1012
1013 Import this package into SDC and follow onboarding steps.
1014
1015 Service Creation with SDC
1016 +++++++++++++++++++++++++
1017
1018 **<MANUAL>**
1019
1020 Service Creation in SDC is composed of the same steps that are performed by most other use-cases. For reference, you can relate to `vLB use-case`_
1021
1022 Onboard VSP
1023
1024 - Remember during VSP onboard to choose "Network Package" Onboarding procedure
1025
1026 Create VF and Service
1027 Service -> Properties Assignment -> Choose VF (at right box):
1028
1029 - skip_post_instantiation_configuration - True
1030 - sdnc_artifact_name - vnf
1031 - sdnc_model_name - vFW_CNF_CDS
1032 - sdnc_model_version - 7.0.0
1033
1034 **<AUTOMATED>**
1035 .. note:: The onboarding packages for **Dummy Heat** and **Native Helm** path contain different CBA packages but with the same version and number. In consequence, when one VSP is distributed it replaces the CBA package of the other one and you can instantiate service only for the vFW CNF service service model distributed as a last one. If you want to instantiate vFW CNF service, make sure you have fresh distribution of vFW CNF service model.
1036
1037 ::
1038
1039     python onboarding.py
1040
1041 Distribution Of Service
1042 +++++++++++++++++++++++
1043
1044 **<MANUAL>**
1045
1046 Distribute service.
1047
1048 Verify in SDC UI if distribution was successful. In case of any errors (sometimes SO fails on accepting CLOUD_TECHNOLOGY_SPECIFIC_ARTIFACT), try redistribution. You can also verify distribution for few components manually:
1049
1050 - SDC:
1051
1052     SDC Catalog database should have our service now defined.
1053
1054     ::
1055
1056         Postman -> LCM -> [SDC] Catalog Service
1057
1058     ::
1059
1060         {
1061             "uuid": "64dd38f3-2307-4e0a-bc98-5c2cbfb260b6",
1062             "invariantUUID": "cd1a5c2d-2d4e-4d62-ac10-a5fe05e32a22",
1063             "name": "vfw_cnf_cds_svc",
1064             "version": "1.0",
1065             "toscaModelURL": "/sdc/v1/catalog/services/64dd38f3-2307-4e0a-bc98-5c2cbfb260b6/toscaModel",
1066             "category": "Network L4+",
1067             "lifecycleState": "CERTIFIED",
1068             "lastUpdaterUserId": "cs0008",
1069             "distributionStatus": "DISTRIBUTED"
1070         }
1071
1072     Listing should contain entry with our service name **vfw_cnf_cds_svc**.
1073
1074 .. note:: Note that it's an example name, it depends on how your model is named during Service design in SDC and must be kept in sync with Postman variables.
1075
1076 - SO:
1077
1078     SO Catalog database should have our service NFs defined now.
1079
1080     ::
1081
1082         Postman -> LCM -> [SO] Catalog DB Service xNFs
1083
1084     ::
1085
1086         {
1087             "serviceVnfs": [
1088                 {
1089                     "modelInfo": {
1090                         "modelName": "vfw_cnf_cds_vsp",
1091                         "modelUuid": "70edaca8-8c79-468a-aa76-8224cfe686d0",
1092                         "modelInvariantUuid": "7901fc89-a94d-434a-8454-1e27b99dc0e2",
1093                         "modelVersion": "1.0",
1094                         "modelCustomizationUuid": "86dc8af4-aa17-4fc7-9b20-f12160d99718",
1095                         "modelInstanceName": "vfw_cnf_cds_vsp 0"
1096                     },
1097                     "toscaNodeType": "org.openecomp.resource.vf.VfwCnfCdsVsp",
1098                     "nfFunction": null,
1099                     "nfType": null,
1100                     "nfRole": null,
1101                     "nfNamingCode": null,
1102                     "multiStageDesign": "false",
1103                     "vnfcInstGroupOrder": null,
1104                     "resourceInput": "TBD",
1105                     "vfModules": [
1106                         {
1107                             "modelInfo": {
1108                                 "modelName": "VfwCnfCdsVsp..base_template..module-0",
1109                                 "modelUuid": "274f4bc9-7679-4767-b34d-1df51cdf2496",
1110                                 "modelInvariantUuid": "52842255-b7be-4a1c-ab3b-2bd3bd4a5423",
1111                                 "modelVersion": "1",
1112                                 "modelCustomizationUuid": "b27fad11-44da-4840-9256-7ed8a32fbe3e"
1113                             },
1114                             "isBase": true,
1115                             "vfModuleLabel": "base_template",
1116                             "initialCount": 1,
1117                             "hasVolumeGroup": false
1118                         },
1119                         {
1120                             "modelInfo": {
1121                                 "modelName": "VfwCnfCdsVsp..vsn..module-1",
1122                                 "modelUuid": "0cbf558f-5a96-4555-b476-7df8163521aa",
1123                                 "modelInvariantUuid": "36f25e1b-199b-4de2-b656-c870d341cf0e",
1124                                 "modelVersion": "1",
1125                                 "modelCustomizationUuid": "4cac0584-c0d6-42a7-bdb3-29162792e07f"
1126                             },
1127                             "isBase": false,
1128                             "vfModuleLabel": "vsn",
1129                             "initialCount": 0,
1130                             "hasVolumeGroup": false
1131                         },
1132                         {
1133                             "modelInfo": {
1134                                 "modelName": "VfwCnfCdsVsp..vpkg..module-2",
1135                                 "modelUuid": "011b5f61-6524-4789-bd9a-44cfbf321463",
1136                                 "modelInvariantUuid": "4e2b9975-5214-48b8-861a-5701c09eedfa",
1137                                 "modelVersion": "1",
1138                                 "modelCustomizationUuid": "4e7028a1-4c80-4d20-a7a2-a1fb3343d5cb"
1139                             },
1140                             "isBase": false,
1141                             "vfModuleLabel": "vpkg",
1142                             "initialCount": 0,
1143                             "hasVolumeGroup": false
1144                         },
1145                         {
1146                             "modelInfo": {
1147                                 "modelName": "VfwCnfCdsVsp..vfw..module-3",
1148                                 "modelUuid": "0de4ed56-8b4c-4a2d-8ce6-85d5e269204f",
1149                                 "modelInvariantUuid": "9ffda670-3d77-4f6c-a4ad-fb7a09f19817",
1150                                 "modelVersion": "1",
1151                                 "modelCustomizationUuid": "1e123e43-ba40-4c93-90d7-b9f27407ec03"
1152                             },
1153                             "isBase": false,
1154                             "vfModuleLabel": "vfw",
1155                             "initialCount": 0,
1156                             "hasVolumeGroup": false
1157                         }
1158                     ],
1159                     "groups": []
1160                 }
1161             ]
1162         }
1163
1164 .. note:: For **Native Helm** path both modelName will have prefix *helm_* i.e. *helm_vfw* and vfModuleLabel will have *helm_* keyword inside i.e. *VfwCnfCdsVsp..helm_vfw..module-3*
1165
1166 - SDNC:
1167
1168     SDNC should have it's database updated with *sdnc_* properties that were set during service modeling.
1169
1170 .. note:: Please change credentials respectively to your installation. The required credentials can be retrieved with instruction `Retrieving logins and passwords of ONAP components`_
1171
1172
1173 ::
1174
1175     kubectl -n onap exec onap-mariadb-galera-0 -it -- sh
1176     mysql -uroot -psecretpassword -D sdnctl
1177             MariaDB [sdnctl]> select sdnc_model_name, sdnc_model_version, sdnc_artifact_name from VF_MODEL WHERE customization_uuid = '86dc8af4-aa17-4fc7-9b20-f12160d99718';
1178             +-----------------+--------------------+--------------------+
1179             | sdnc_model_name | sdnc_model_version | sdnc_artifact_name |
1180             +-----------------+--------------------+--------------------+
1181             | vFW_CNF_CDS     | 7.0.0              | vnf                |
1182             +-----------------+--------------------+--------------------+
1183             1 row in set (0.00 sec)
1184
1185
1186 .. note:: customization_uuid value is the modelCustomizationUuid of the VNF (serviceVnfs response in 2nd Postman call from SO Catalog DB)
1187
1188 - CDS:
1189
1190     CDS should onboard CBA uploaded as part of VF.
1191
1192     ::
1193
1194         Postman -> Distribution Verification -> [CDS] List CBAs
1195
1196     ::
1197
1198                 [
1199                         {
1200                                 "blueprintModel": {
1201                                         "id": "c505e516-b35d-4181-b1e2-bcba361cfd0a",
1202                                         "artifactUUId": null,
1203                                         "artifactType": "SDNC_MODEL",
1204                                         "artifactVersion": "7.0.0",
1205                                         "artifactDescription": "Controller Blueprint for vFW_CNF_CDS:7.0.0",
1206                                         "internalVersion": null,
1207                                         "createdDate": "2020-05-29T06:02:20.000Z",
1208                                         "artifactName": "vFW_CNF_CDS",
1209                                         "published": "N",
1210                                         "updatedBy": "Samuli Silvius <s.silvius@partner.samsung.com>",
1211                                         "tags": "Samuli Silvius, Lukasz Rajewski, vFW_CNF_CDS"
1212                                 }
1213                         }
1214                 ]
1215
1216     The list should have the matching entries with SDNC database:
1217
1218     - sdnc_model_name == artifactName
1219     - sdnc_model_version == artifactVersion
1220
1221     You can also use Postman to download CBA for further verification but it's fully optional.
1222
1223     ::
1224
1225         Postman -> Distribution Verification -> [CDS] CBA Download
1226
1227 - K8splugin:
1228
1229     K8splugin should onboard 4 resource bundles related to helm resources:
1230
1231     ::
1232
1233         Postman -> Distribution Verification -> [K8splugin] List Resource Bundle Definitions
1234
1235     ::
1236
1237                 [
1238                         {
1239                                 "rb-name": "52842255-b7be-4a1c-ab3b-2bd3bd4a5423",
1240                                 "rb-version": "274f4bc9-7679-4767-b34d-1df51cdf2496",
1241                                 "chart-name": "base_template",
1242                                 "description": "",
1243                                 "labels": {
1244                                         "vnf_customization_uuid": "b27fad11-44da-4840-9256-7ed8a32fbe3e"
1245                                 }
1246                         },
1247                         {
1248                                 "rb-name": "36f25e1b-199b-4de2-b656-c870d341cf0e",
1249                                 "rb-version": "0cbf558f-5a96-4555-b476-7df8163521aa",
1250                                 "chart-name": "vsn",
1251                                 "description": "",
1252                                 "labels": {
1253                                         "vnf_customization_uuid": "4cac0584-c0d6-42a7-bdb3-29162792e07f"
1254                                 }
1255                         },
1256                         {
1257                                 "rb-name": "4e2b9975-5214-48b8-861a-5701c09eedfa",
1258                                 "rb-version": "011b5f61-6524-4789-bd9a-44cfbf321463",
1259                                 "chart-name": "vpkg",
1260                                 "description": "",
1261                                 "labels": {
1262                                         "vnf_customization_uuid": "4e7028a1-4c80-4d20-a7a2-a1fb3343d5cb"
1263                                 }
1264                         },
1265                         {
1266                                 "rb-name": "9ffda670-3d77-4f6c-a4ad-fb7a09f19817",
1267                                 "rb-version": "0de4ed56-8b4c-4a2d-8ce6-85d5e269204f",
1268                                 "chart-name": "vfw",
1269                                 "description": "",
1270                                 "labels": {
1271                                         "vnf_customization_uuid": "1e123e43-ba40-4c93-90d7-b9f27407ec03"
1272                                 }
1273                         }
1274                 ]
1275
1276 **<AUTOMATED>**
1277
1278 Distribution is a part of the onboarding step and at this stage is performed
1279
1280 3-2 CNF Instantiation
1281 .....................
1282
1283 This is the whole beef of the use case and furthermore the core of it is that we can instantiate any amount of instances of the same CNF each running and working completely of their own. Very basic functionality in VM (VNF) side but for Kubernetes and ONAP integration this is the first milestone towards other normal use cases familiar for VNFs.
1284
1285 **<MANUAL>**
1286
1287 Postman collection is automated to populate needed parameters when queries are run in correct order. If you did not already run following 2 queries after distribution (to verify distribution), run those now:
1288
1289 ::
1290
1291     Postman -> LCM -> 1.[SDC] Catalog Service
1292
1293 ::
1294
1295     Postman -> LCM -> 2. [SO] Catalog DB Service xNFs
1296
1297 Now actual instantiation can be triggered with:
1298
1299 ::
1300
1301     Postman -> LCM -> 3. [SO] Self-Serve Service Assign & Activate
1302
1303 **<AUTOMATED>**
1304
1305 Required inputs for instantiation process are taken from the *config.py* file.
1306 ::
1307
1308     python instantiation.py
1309
1310
1311 Finally, to follow the progress of instantiation request with SO's GET request:
1312
1313 **<MANUAL>**
1314
1315 ::
1316
1317     Postman -> LCM -> 4. [SO] Infra Active Requests
1318
1319 The successful reply payload in that query should start like this:
1320
1321 ::
1322
1323     {
1324       "requestStatus": "COMPLETE",
1325       "statusMessage": "Macro-Service-createInstance request was executed correctly.",
1326       "flowStatus": "Successfully completed all Building Blocks",
1327       "progress": 100,
1328       "startTime": 1590996766000,
1329       "endTime": 1590996945000,
1330       "source": "Postman",
1331       "vnfId": "93b3350d-ed6f-413b-9cc5-a158c1676eb0",
1332       "tenantId": "aaaa",
1333       "requestBody": "**REDACTED FOR READABILITY**",
1334       "lastModifiedBy": "CamundaBPMN",
1335       "modifyTime": "2020-06-01T07:35:45.000+0000",
1336       "cloudRegion": "k8sregionfour",
1337       "serviceInstanceId": "8ead0480-cf44-428e-a4c2-0e6ed10f7a72",
1338       "serviceInstanceName": "vfw-cnf-16",
1339       "requestScope": "service",
1340       "requestAction": "createInstance",
1341       "requestorId": "11c2ddb7-4659-4bf0-a685-a08dcbb5a099",
1342       "requestUrl": "http://infra:30277/onap/so/infra/serviceInstantiation/v7/serviceInstances",
1343       "tenantName": "k8stenant",
1344       "cloudApiRequests": [],
1345       "requestURI": "6a369c8e-d492-4ab5-a107-46804eeb7873",
1346       "_links": {
1347         "self": {
1348           "href": "http://infra:30277/infraActiveRequests/6a369c8e-d492-4ab5-a107-46804eeb7873"
1349         },
1350         "infraActiveRequests": {
1351           "href": "http://infra:30277/infraActiveRequests/6a369c8e-d492-4ab5-a107-46804eeb7873"
1352         }
1353       }
1354     }
1355
1356
1357 Progress can be also followed also with `SO Monitoring`_ dashboard.
1358
1359 Service Instance Termination
1360 ++++++++++++++++++++++++++++
1361
1362 Service instance can be terminated with the following postman call:
1363
1364 **<MANUAL>**
1365 ::
1366
1367     Postman -> LCM -> 5. [SO] Service Delete
1368
1369 **<AUTOMATED>**
1370 ::
1371
1372     python delete.py
1373
1374 .. note:: Automated service deletion mecvhanism takes information about the instantiated service instance from the *config.py* file and *SERVICE_INSTANCE_NAME* variable. If you modify this value before the deletion of existing service instance then you will loose opportunity to easy delete already created service instance.
1375
1376 Second Service Instance Instantiation
1377 +++++++++++++++++++++++++++++++++++++
1378
1379 To finally verify that all the work done within this demo, it should be possible to instantiate second vFW instance successfully.
1380
1381 Trigger new instance createion. You can use previous call or a separate one that will utilize profile templating mechanism implemented in CBA:
1382
1383 **<MANUAL>**
1384 ::
1385
1386     Postman -> LCM -> 6. [SO] Self-Serve Service Assign & Activate - Second
1387
1388 **<AUTOMATED>**
1389
1390 Before second instance of service is created you need to modify *config.py* file changing the *SERVICENAME* and *SERVICE_INSTANCE_NAME* to different values and by changing the value or *k8s-rb-profile-name* parameter for *vpg* module from value *default* or *vfw-cnf-cds-base-profile* to *vfw-cnf-cds-vpkg-profile* what will result with instantiation of additional ssh service for *vpg* module. Second onboarding in automated case is required due to the existing limitations of *python-sdk* librarier that create vf-module instance name base on the vf-module model name. For manual Postman option vf-module instance name is set on service instance name basis what makes it unique.
1391 ::
1392
1393     python onboarding.py
1394     python instantiation.py
1395
1396 3-3 Results and Logs
1397 ....................
1398
1399 Now multiple instances of Kubernetes variant of vFW are running in target VIM (KUD deployment).
1400
1401 .. figure:: files/vFW_CNF_CDS/vFW_Instance_In_Kubernetes.png
1402    :align: center
1403
1404    vFW Instance In Kubernetes
1405
1406 **<MANUAL>**
1407
1408 To review situation after instantiation from different ONAP components, most of the info can be found using Postman queries provided. For each query, example response payload(s) is/are saved and can be found from top right corner of the Postman window.
1409
1410 ::
1411
1412     Postman -> Instantiation verification**
1413
1414 Execute example Postman queries and check example section to see the valid results.
1415
1416 ==========================    =================
1417 Verify Target                 Postman query
1418 --------------------------    -----------------
1419 Service Instances in AAI      **Postman -> Instantiation verification -> [AAI] List Service Instances**
1420 Service Instances in MDSAL    **Postman -> Instantiation verification -> [SDNC] GR-API MD-SAL Services**
1421 K8S Instances in KUD          **Postman -> Instantiation verification -> [K8splugin] List Instances**
1422 ==========================    =================
1423
1424 .. note:: "[AAI] List vServers <Empty>" Request won't return any vserver info from AAI, as currently such information are not provided during instantiation process.
1425
1426
1427 Query also directly from VIM:
1428
1429 ::
1430
1431     #
1432     ubuntu@kud-host:~$ kubectl get pods,svc,networks,cm,network-attachment-definition,deployments
1433     NAME                                                            READY   STATUS    RESTARTS   AGE
1434     pod/vfw-17f6f7d3-8424-4550-a188-cd777f0ab48f-7cfb9949d9-8b5vg   1/1     Running   0          22s
1435     pod/vfw-19571429-4af4-49b3-af65-2eb1f97bba43-75cd7c6f76-4gqtz   1/1     Running   0          11m
1436     pod/vpg-5ea0d3b0-9a0c-4e88-a2e2-ceb84810259e-f4485d485-pln8m    1/1     Running   0          11m
1437     pod/vpg-8581bc79-8eef-487e-8ed1-a18c0d638b26-6f8cff54d-dvw4j    1/1     Running   0          32s
1438     pod/vsn-8e7ac4fc-2c31-4cf8-90c8-5074c5891c14-5879c56fd-q59l7    2/2     Running   0          11m
1439     pod/vsn-fdc9b4ba-c0e9-4efc-8009-f9414ae7dd7b-5889b7455-96j9d    2/2     Running   0          30s
1440
1441     NAME                                                              TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
1442     service/vpg-5ea0d3b0-9a0c-4e88-a2e2-ceb84810259e-management-api   NodePort    10.244.43.245   <none>        2831:30831/TCP   11m
1443     service/vpg-8581bc79-8eef-487e-8ed1-a18c0d638b26-management-api   NodePort    10.244.1.45     <none>        2831:31831/TCP   33s
1444     service/vsn-8e7ac4fc-2c31-4cf8-90c8-5074c5891c14-darkstat-ui      NodePort    10.244.16.187   <none>        667:30667/TCP    11m
1445     service/vsn-fdc9b4ba-c0e9-4efc-8009-f9414ae7dd7b-darkstat-ui      NodePort    10.244.20.229   <none>        667:31667/TCP    30s
1446
1447     NAME                                                                                    AGE
1448     network.k8s.plugin.opnfv.org/55118b80-8470-4c99-bfdf-d122cd412739-management-network    40s
1449     network.k8s.plugin.opnfv.org/55118b80-8470-4c99-bfdf-d122cd412739-protected-network     40s
1450     network.k8s.plugin.opnfv.org/55118b80-8470-4c99-bfdf-d122cd412739-unprotected-network   40s
1451     network.k8s.plugin.opnfv.org/567cecc3-9692-449e-877a-ff0b560736be-management-network    11m
1452     network.k8s.plugin.opnfv.org/567cecc3-9692-449e-877a-ff0b560736be-protected-network     11m
1453     network.k8s.plugin.opnfv.org/567cecc3-9692-449e-877a-ff0b560736be-unprotected-network   11m
1454
1455     NAME                                                           DATA   AGE
1456     configmap/vfw-17f6f7d3-8424-4550-a188-cd777f0ab48f-configmap   6      22s
1457     configmap/vfw-19571429-4af4-49b3-af65-2eb1f97bba43-configmap   6      11m
1458     configmap/vpg-5ea0d3b0-9a0c-4e88-a2e2-ceb84810259e-configmap   6      11m
1459     configmap/vpg-8581bc79-8eef-487e-8ed1-a18c0d638b26-configmap   6      33s
1460     configmap/vsn-8e7ac4fc-2c31-4cf8-90c8-5074c5891c14-configmap   2      11m
1461     configmap/vsn-fdc9b4ba-c0e9-4efc-8009-f9414ae7dd7b-configmap   2      30s
1462
1463     NAME                                                                                       AGE
1464     networkattachmentdefinition.k8s.cni.cncf.io/55118b80-8470-4c99-bfdf-d122cd412739-ovn-nat   40s
1465     networkattachmentdefinition.k8s.cni.cncf.io/567cecc3-9692-449e-877a-ff0b560736be-ovn-nat   11m
1466
1467     NAME                                                             READY   UP-TO-DATE   AVAILABLE   AGE
1468     deployment.extensions/vfw-17f6f7d3-8424-4550-a188-cd777f0ab48f   1/1     1            1           22s
1469     deployment.extensions/vfw-19571429-4af4-49b3-af65-2eb1f97bba43   1/1     1            1           11m
1470     deployment.extensions/vpg-5ea0d3b0-9a0c-4e88-a2e2-ceb84810259e   1/1     1            1           11m
1471     deployment.extensions/vpg-8581bc79-8eef-487e-8ed1-a18c0d638b26   1/1     1            1           33s
1472     deployment.extensions/vsn-8e7ac4fc-2c31-4cf8-90c8-5074c5891c14   1/1     1            1           11m
1473     deployment.extensions/vsn-fdc9b4ba-c0e9-4efc-8009-f9414ae7dd7b   1/1     1            1           30s
1474
1475
1476 Component Logs From The Execution
1477 +++++++++++++++++++++++++++++++++
1478
1479 **<MANUAL>**
1480
1481 All logs from the use case execution can be retrieved with following
1482
1483 ::
1484
1485     kubectl -n onap logs `kubectl -n onap get pods -o go-template --template '{{range .items}}{{.metadata.name}}{{"\n"}}{{end}}' | grep -m1 <COMPONENT_NAME>` -c <CONTAINER>
1486
1487 where <COMPONENT_NAME> and <CONTAINER> should be replaced with following keywords respectively:
1488
1489 - so-bpmn-infra, so-bpmn-infra
1490 - so-openstack-adapter, so-openstack-adapter
1491 - so-cnf-adapter, so-cnf-adapter
1492 - sdnc-0, sdnc
1493
1494   From karaf.log all requests (payloads) to CDS can be found by searching following string:
1495
1496   ``'Sending request below to url http://cds-blueprints-processor-http:8080/api/v1/execution-service/process'``
1497
1498 - cds-blueprints-processor, cds-blueprints-processor
1499 - multicloud-k8s, multicloud-k8s
1500 - network-name-gen, network-name-gen, 
1501
1502 **Debug log**
1503
1504 In case more detailed logging is needed, here's instructions how to setup DEBUG logging for few components.
1505
1506 - SDNC
1507
1508   ::
1509
1510     kubectl -n onap exec -it onap-sdnc-0 -c sdnc /opt/opendaylight/bin/client log:set DEBUG
1511
1512
1513 - CDS Blueprint Processor
1514
1515   ::
1516
1517     # Edit configmap
1518     kubectl -n onap edit configmap onap-cds-blueprints-processor-configmap
1519
1520     # Edit logback.xml content change root logger level from info to debug.
1521     <root level="debug">
1522         <appender-ref ref="STDOUT"/>
1523     </root>
1524
1525     # Delete the Pods to make changes effective
1526     kubectl -n onap delete pods -l app=cds-blueprints-processor
1527
1528 3-4 Verification of the CNF Status
1529 ..................................
1530
1531 **<MANUAL>**
1532
1533 The Guilin introduces new API for verification of the status of instantiated resouces in k8s cluster. The API gives result similar to *kubectl describe* operation for all the resources created for particular *rb-definition*. Status API can be used to verify the k8s resources after instantiation but also can be used leveraged for synchronization of the information with external components, like AAI in the future. To use Status API call
1534
1535 ::
1536
1537     curl -i http://${K8S_NODE_IP}:30280/api/multicloud-k8s/v1/v1/instance/{rb-instance-id}/status
1538
1539 where {rb-instance-id} can be taken from the list of instances resolved the following call
1540
1541 ::
1542
1543     curl -i http://${K8S_NODE_IP}:30280/api/multicloud-k8s/v1/v1/instance/
1544
1545 or from AAI *heat-stack-id* property of created *vf-module* associated with each Helm package from onboarded VSP which holds the *rb-instance-id* value.
1546
1547 Examplary output of Status API is shown below (full result of test vFW CNF helm package in the attached file). It shows the list of GVK resources created for requested *rb-instance* (Helm and vf-module in the same time) with assocated describe result for all of them.
1548
1549   :download:`Full Status API Result <files/vFW_CNF_CDS/status-response.json>`
1550
1551 ::
1552
1553     {
1554         "request": {
1555             "rb-name": "vfw",
1556             "rb-version": "plugin_test",
1557             "profile-name": "test_profile",
1558             "release-name": "",
1559             "cloud-region": "kud",
1560             "labels": {
1561                 "testCaseName": "plugin_fw.sh"
1562             },
1563             "override-values": {
1564                 "global.onapPrivateNetworkName": "onap-private-net-test"
1565             }
1566         },
1567         "ready": false,
1568         "resourceCount": 1,
1569         "resourcesStatus": [
1570             {
1571                 "name": "sink-configmap",
1572                 "GVK": {
1573                     "Group": "",
1574                     "Version": "v1",
1575                     "Kind": "ConfigMap"
1576                 },
1577                 "status": {
1578                     "apiVersion": "v1",
1579                     "data": {
1580                         "protected_net_gw": "192.168.20.100",
1581                         "protected_private_net_cidr": "192.168.10.0/24"
1582                     },
1583                     "kind": "ConfigMap",
1584                     "metadata": {
1585                         "creationTimestamp": "2020-09-29T13:36:25Z",
1586                         "labels": {
1587                             "k8splugin.io/rb-instance-id": "practical_nobel"
1588                         },
1589                         "name": "sink-configmap",
1590                         "namespace": "plugin-tests-namespace",
1591                         "resourceVersion": "10720771",
1592                         "selfLink": "/api/v1/namespaces/plugin-tests-namespace/configmaps/sink-configmap",
1593                         "uid": "46c8bec4-980c-455b-9eb0-fb84ac8cc450"
1594                     }
1595                 }
1596             }
1597         ]
1598     }
1599
1600 .. note:: The example of how the Stauts API could be integrated into CDS can be found in the Frankfurt version of k8s profile upload mechanism `Frankfurt CBA Definition`_ (*profile-upload* TOSCA node template), implemented in inside of the Kotlin script `Frankfurt CBA Script`_ for profile upload. This method shows how to integrate mutlicloud-k8s API endpoint into Kotlin script executed by CDS. For more details please take a look into Definition file of 1.0.45 version of the CBA and also the kotlin script used there for uploading the profile. 
1601
1602 PART 4 - Future improvements needed
1603 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1604
1605 Future development areas for this use case:
1606
1607 - Automated smoke use case.
1608 - Include Closed Loop part of the vFW demo.
1609 - vFW service with Openstack VNF and Kubernetes CNF
1610
1611 Future development areas for CNF support:
1612
1613 - Validation of Helm package and extraction of override values in time of the package onboarding.
1614 - Post instantiation configuration with Day 2 configuration APIs of multicloud/k8S API.
1615 - Synchroinzation of information about CNF between AAI and K8s.
1616 - Validation of status and health of CNF.
1617 - Use multicloud/k8S API v2.
1618
1619 Many features from the list above are covered by the Honolulu roadmap described in `REQ-458`_. 
1620
1621
1622 .. _ONAP Deployment Guide: https://docs.onap.org/projects/onap-oom/en/guilin/oom_quickstart_guide.html
1623 .. _CDS Documentation: https://docs.onap.org/projects/onap-ccsdk-cds/en/guilin/index.html
1624 .. _vLB use-case: https://wiki.onap.org/pages/viewpage.action?pageId=71838898
1625 .. _vFW_CNF_CDS Model: https://git.onap.org/demo/tree/heat/vFW_CNF_CDS/templates?h=guilin
1626 .. _vFW_CNF_CDS Automation: https://git.onap.org/demo/tree/heat/vFW_CNF_CDS/automation?h=guilin
1627 .. _vFW CDS Dublin: https://wiki.onap.org/display/DW/vFW+CDS+Dublin
1628 .. _vFW CBA Model: https://git.onap.org/ccsdk/cds/tree/components/model-catalog/blueprint-model/service-blueprint/vFW?h=elalto
1629 .. _vFW_Helm Model: https://git.onap.org/multicloud/k8s/tree/kud/demo/firewall?h=elalto
1630 .. _vFW_NextGen: https://git.onap.org/demo/tree/heat/vFW_NextGen?h=elalto
1631 .. _vFW EDGEX K8S: https://docs.onap.org/en/elalto/submodules/integration.git/docs/docs_vfw_edgex_k8s.html
1632 .. _vFW EDGEX K8S In ONAP Wiki: https://wiki.onap.org/display/DW/Deploying+vFw+and+EdgeXFoundry+Services+on+Kubernets+Cluster+with+ONAP
1633 .. _KUD github: https://github.com/onap/multicloud-k8s/tree/master/kud/hosting_providers/baremetal
1634 .. _KUD in Wiki: https://wiki.onap.org/display/DW/Kubernetes+Baremetal+deployment+setup+instructions
1635 .. _Multicloud k8s gerrit: https://gerrit.onap.org/r/q/status:open+project:+multicloud/k8s
1636 .. _KUD subproject in github: https://github.com/onap/multicloud-k8s/tree/master/kud
1637 .. _Frankfurt CBA Definition: https://git.onap.org/demo/tree/heat/vFW_CNF_CDS/templates/cba/Definitions/vFW_CNF_CDS.json?h=frankfurt
1638 .. _Frankfurt CBA Script: https://git.onap.org/demo/tree/heat/vFW_CNF_CDS/templates/cba/Scripts/kotlin/KotlinK8sProfileUpload.kt?h=frankfurt
1639 .. _SO-3403: https://jira.onap.org/browse/SO-3403
1640 .. _SO-3404: https://jira.onap.org/browse/SO-3404
1641 .. _REQ-182: https://jira.onap.org/browse/REQ-182
1642 .. _REQ-341: https://jira.onap.org/browse/REQ-341
1643 .. _REQ-458: https://jira.onap.org/browse/REQ-458
1644 .. _Python SDK: https://docs.onap.org/projects/onap-integration/en/guilin/integration-tooling.html?highlight=python-sdk#python-onapsdk
1645 .. _KUD Jenkins ci/cd verification: https://jenkins.onap.org/job/multicloud-k8s-master-kud-deployment-verify-shell/
1646 .. _K8s cloud site config: https://docs.onap.org/en/guilin/guides/onap-operator/cloud_site/k8s/index.html
1647 .. _SO Monitoring: https://docs.onap.org/projects/onap-so/en/guilin/developer_info/Working_with_so_monitoring.html
1648 .. _Data Dictionary: https://git.onap.org/demo/tree/heat/vFW_CNF_CDS/templates/cba-dd.json?h=guilin
1649 .. _Helm Healer: https://git.onap.org/oom/offline-installer/tree/tools/helm-healer.sh?h=frankfurt
1650 .. _CDS UAT Testing: https://wiki.onap.org/display/DW/Modeling+Concepts
1651 .. _infra_workload: https://docs.onap.org/projects/onap-multicloud-framework/en/latest/specs/multicloud_infra_workload.html?highlight=multicloud