VNFRQTS - Updating Bulleted Requirements
[vnfrqts/requirements.git] / docs / Chapter7.rst
1 .. This work is licensed under a Creative Commons Attribution 4.0 International License.
2 .. http://creativecommons.org/licenses/by/4.0
3 .. Copyright 2017 AT&T Intellectual Property.  All rights reserved.
4
5
6 **ONAP Management Requirements**
7 =====================================
8
9 The ONAP platform is the part of the larger Network Function
10 Virtualization/Software Defined Network (NFV/SDN) ecosystem that
11 is responsible for the efficient control, operation and management
12 of Virtual Network Function (VNF) capabilities and functions. It
13 specifies standardized abstractions and interfaces that enable
14 efficient interoperation of the NVF/SDN ecosystem components. It
15 enables product/service independent capabilities for design, creation
16 and runtime lifecycle management (includes all aspects of installation,
17 change management, assurance, and retirement) of resources in NFV/SDN
18 environment (see ECOMP white paper ). These capabilities are provided
19 using two major architectural frameworks: (1) a Design Time Framework
20 to design, define and program the platform (uniform onboarding), and
21 (2) a Runtime Execution Framework to execute the logic programmed in
22 the design environment (uniform delivery and runtime lifecycle
23 management). The platform delivers an integrated information model
24 based on the VNF package to express the characteristics and behavior
25 of these resources in the Design Time Framework. The information model
26 is utilized by Runtime Execution Framework to manage the runtime
27 lifecycle of the VNFs. The management processes are orchestrated
28 across various modules of ONAP to instantiate, configure, scale,
29 monitor, and reconfigure the VNFs using a set of standard APIs
30 provided by the VNF developers.
31
32 Although the guidelines and requirements specified in this document
33 were originally driven by the need to standardize and automate the
34 management of the virtualized environments (with VNFs) operated by
35 Service Providers, we believe that most of the requirements are equally
36 applicable to the operation of the physical network functions (PNFs),
37 those network functions provided by traditional physical network
38 elements (e.g. whitebox switches) or customized peripherals (e.g. a
39 video rendering engine for augmented reality). The primary area of
40 difference will be in how the network function is orchestrated into
41 place – VNFs can be much more dynamically created & placed by ONAP
42 to support varying geographic, availability and scalability needs,
43 whereas the PNFs have to be deployed a priori in specific locations
44 based on planning and engineering – their availability and scalability
45 will be determined by the capabilities offered by the PNFs.
46
47 **PNF** is a vendor-provided Network Function(s) implemented using a
48 bundled set of hardware and software while VNFs utilize cloud resources
49 to provide Network Functions through virtualized software modules.  PNF
50 can be supplied by a vendor as a Black BOX (provides no knowledge of its
51 internal characteristics, logic, and software design/architecture) or as
52 a White Box (provides detailed knowledge and access of its internal
53 components and logic) or as a Grey Box (provides limited knowledge and
54 access to its internal components).
55
56 * Requirements that equally apply to both VNFs and PNFs are defined as
57   "The xNF MUST/SHOULD/..."
58 * Requirements that only apply to VNFs are defined as "The VNF MUST/SHOULD/..."
59 * Requirements that only apply to PNFs are defined as "The PNF MUST/SHOULD/..."
60
61
62 Service Design
63 ------------------------------------
64
65 This section, Service Design, has been left intentionally blank. It
66 is out-of-scope for the VNF Requirements project for the Amsterdam
67 release and no numbered requirements are expected. Content may be
68 added in future updates of this document.
69
70 VNF On-boarding and package management
71 -----------------------------------------------------------------------------
72
73 Design Definition
74 ^^^^^^^^^^^^^^^^^^
75
76 The ONAP Design Time Framework provides the ability to design NFV
77 resources including VNFs, Services, and products. The VNF provider must
78 provide VNF packages that include a rich set of recipes, management and
79 functional interfaces, policies, configuration parameters, and
80 infrastructure requirements that can be utilized by the ONAP Design
81 module to onboard and catalog these resources. Initially this
82 information may be provided in documents, but in the near future a
83 method will be developed to automate as much of the transfer of data as
84 possible to satisfy its long term requirements.
85
86 The current VNF Package Requirement is based on a subset of the
87 Requirements contained in the ETSI Document: ETSI GS NFV-MAN 001 v1.1.1
88 and GS NFV IFA011 V0.3.0 (2015-10) - Network Functions Virtualization
89 (NFV), Management and Orchestration, VNF Packaging Specification.
90
91 Resource Description
92 ^^^^^^^^^^^^^^^^^^^^^^
93
94 * R-77707 The xNF provider **MUST** include a Manifest File that
95   contains a list of all the components in the xNF package.
96 * R-66070 The xNF Package **MUST** include xNF Identification Data to
97   uniquely identify the resource for a given xNF provider. The identification
98   data must include: an identifier for the xNF, the name of the xNF as was
99   given by the xNF provider, xNF description, xNF provider, and version.
100 * R-69565 The xNF Package **MUST** include documentation describing xNF
101   Management APIs, which must include information and tools for ONAP to
102   deploy and configure (initially and ongoing) the xNF application(s)
103   (e.g., NETCONF APIs) which includes a description of configurable
104   parameters for the xNF and whether the parameters can be configured
105   after xNF instantiation.
106 * R-00156 The xNF Package **MUST** include documentation describing xNF
107   Management APIs, which must include information and tools for ONAP
108   to monitor the health of the xNF (conditions that require healing
109   and/or scaling responses).
110 * R-00068 The xNF Package **MUST** include documentation which includes
111   a description of parameters that can be monitored for the xNF and
112   event records (status, fault, flow, session, call, control plane,
113   etc.) generated by the xNF after instantiation.
114 * R-12678 The xNF Package **MUST** include documentation which includes a
115   description of runtime lifecycle events and related actions (e.g.,
116   control responses, tests) which can be performed for the xNF.
117 * R-84366 The xNF Package **MUST** include documentation describing
118   xNF Functional APIs that are utilized to build network and
119   application services. This document describes the externally exposed
120   functional inputs and outputs for the xNF, including interface
121   format and protocols supported.
122 * R-36280 The xNF provider **MUST** provide documentation describing
123   xNF Functional Capabilities that are utilized to operationalize the
124   xNF and compose complex services.
125 * R-98617 The xNF provider **MUST** provide information regarding any
126   dependency (e.g., affinity, anti-affinity) with other xNFs and resources.
127
128 Resource Configuration
129 ^^^^^^^^^^^^^^^^^^^^^^^
130
131 * R-89571 The xNF **MUST** support and provide artifacts for configuration
132   management using at least one of the following technologies;
133   a) Netconf/YANG, b) Chef, or c) Ansible.
134
135   Note: The requirements for Netconf/YANG, Chef, and Ansible protocols
136   are provided separately and must be supported only if the corresponding
137   protocol option is provided by the xNF providor.
138
139 Configuration Management via NETCONF/YANG
140 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
141
142 * R-30278 The xNF provider **MUST** provide a Resource/Device YANG model
143   as a foundation for creating the YANG model for configuration. This will
144   include xNF attributes/parameters and valid values/attributes configurable
145   by policy.
146
147 Configuration Management via Chef
148 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
149
150 * R-13390 The xNF provider **MUST** provide cookbooks to be loaded
151   on the appropriate Chef Server.
152 * R-18525 The xNF provider **MUST** provide a JSON file for each
153   supported action for the xNF.  The JSON file must contain key value
154   pairs with all relevant values populated with sample data that illustrates
155   its usage. The fields and their description are defined in Appendix A.
156
157  Note: Chef support in ONAP is not currently available and planned for 4Q 2017.
158
159 Configuration Management via Ansible
160 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161
162 * R-75608 The xNF provider **MUST** provide playbooks to be loaded
163   on the appropriate Ansible Server.
164 * R-16777 The xNF provider **MUST** provide a JSON file for each
165   supported action for the xNF.  The JSON file must contain key value
166   pairs with all relevant values populated with sample data that illustrates
167   its usage. The fields and their description are defined in Appendix B.
168
169 * R-46567 The xNF Package **MUST** include configuration scripts
170   for boot sequence and configuration.
171 * R-16065 The xNF provider **MUST** provide configurable parameters
172   (if unable to conform to YANG model) including xNF attributes/parameters
173   and valid values, dynamic attributes and cross parameter dependencies
174   (e.g., customer provisioning data).
175
176 Resource Control Loop
177 ^^^^^^^^^^^^^^^^^^^^^^^
178
179 * R-22888 The xNF provider **MUST** provide documentation for the xNF
180   Policy Description to manage the xNF runtime lifecycle. The document
181   must include a description of how the policies (conditions and actions)
182   are implemented in the xNF.
183 * R-01556 The xNF Package **MUST** include documentation describing the
184   fault, performance, capacity events/alarms and other event records
185   that are made available by the xNF.
186 * R-16875 The xNF Package **MUST** include documentation which must include
187   a unique identification string for the specific xNF, a description of
188   the problem that caused the error, and steps or procedures to perform
189   Root Cause Analysis and resolve the issue.
190 * R-35960 The xNF Package **MUST** include documentation which must include
191   all events, severity level (e.g., informational, warning, error) and
192   descriptions including causes/fixes if applicable for the event.
193 * R-42018 The xNF Package **MUST** include documentation which must include
194   all events (fault, measurement for xNF Scaling, Syslogs, State Change
195   and Mobile Flow), that need to be collected at each VM, VNFC (defined in `VNF Guidelines <http://onap.readthedocs.io/en/latest/submodules/vnfrqts/guidelines.git/docs/vnf_guidelines/vnf_guidelines.html#a-glossary>`__ ) and for the overall xNF.
196 * R-27711 The xNF provider **MUST** provide an XML file that contains a
197   list of xNF error codes, descriptions of the error, and possible
198   causes/corrective action.
199 * R-01478 The xNF Package **MUST** include documentation describing all
200   parameters that are available to monitor the xNF after instantiation
201   (includes all counters, OIDs, PM data, KPIs, etc.) that must be
202   collected for reporting purposes.
203 * R-73560 The xNF Package **MUST** include documentation about monitoring
204   parameters/counters exposed for virtual resource management and xNF
205   application management.
206 * R-90632 The xNF Package **MUST** include documentation about KPIs and
207   metrics that need to be collected at each VM for capacity planning
208   and performance management purposes.
209 * R-86235 The xNF Package **MUST** include documentation about the monitoring
210   parameters that must include latencies, success rates, retry rates, load
211   and quality (e.g., DPM) for the key transactions/functions supported by
212   the xNF and those that must be exercised by the xNF in order to perform
213   its function.
214 * R-33904 The xNF Package **MUST** include documentation for each KPI, provide
215   lower and upper limits.
216 * R-53598 The xNF Package **MUST** include documentation to, when relevant,
217   provide a threshold crossing alert point for each KPI and describe the
218   significance of the threshold crossing.
219 * R-69877 The xNF Package **MUST** include documentation for each KPI,
220   identify the suggested actions that need to be performed when a
221   threshold crossing alert event is recorded.
222 * R-22680 The xNF Package **MUST** include documentation that describes
223   any requirements for the monitoring component of tools for Network
224   Cloud automation and management to provide these records to components
225   of the xNF.
226 * R-33694 The xNF Package **MUST** include documentation to when applicable,
227   provide calculators needed to convert raw data into appropriate reporting
228   artifacts.
229 * R-56815 The xNF Package **MUST** include documentation describing
230   supported xNF scaling capabilities and capacity limits (e.g., number
231   of users, bandwidth, throughput, concurrent calls).
232 * R-48596 The xNF Package **MUST** include documentation describing
233   the characteristics for the xNF reliability and high availability.
234 * R-74763 The xNF provider **MUST** provide an artifact per xNF that contains
235   all of the xNF Event Records supported. The artifact should include
236   reference to the specific release of the xNF Event Stream Common Event
237   Data Model document it is based on. (e.g.,
238   `VES Event Listener <https://github.com/att/evel-test-collector/tree/master/docs/att_interface_definition>`__)
239
240 Compute, Network, and Storage Requirements
241 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
242
243 * R-35851 The xNF Package **MUST** include xNF topology that describes
244   basic network and application connectivity internal and external to the
245   xNF including Link type, KPIs, Bandwidth, latency, jitter, QoS (if
246   applicable) for each interface.
247 * R-97102 The VNF Package **MUST** include VM requirements via a Heat
248   template that provides the necessary data for VM specifications
249   for all VNF components - for hypervisor, CPU, memory, storage.
250 * R-20204 The VNF Package **MUST** include VM requirements via a Heat
251   template that provides the necessary data for network connections,
252   interface connections, internal and external to VNF.
253 * R-44896 The VNF Package **MUST** include VM requirements via a Heat
254   template that provides the necessary data for high availability
255   redundancy model.
256 * R-55802 The VNF Package **MUST** include VM requirements via a Heat
257   template that provides the necessary data for scaling/growth VM
258   specifications.
259
260   Note: Must comply with the *Heat requirements in 5.b*.
261
262 * R-26881 The xNF provider **MUST** provide the binaries and images
263   needed to instantiate the xNF (xNF and VNFC images).
264 * R-96634 The xNF provider **MUST** describe scaling capabilities
265   to manage scaling characteristics of the xNF.
266
267
268 Testing
269 ^^^^^^^^^^
270
271 * R-43958 The xNF Package **MUST** include documentation describing
272   the tests that were conducted by the xNF providor and the test results.
273 * R-04298 The xNF provider **MUST** provide their testing scripts to
274   support testing.
275 * R-58775 The xNF provider **MUST** provide software components that
276   can be packaged with/near the xNF, if needed, to simulate any functions
277   or systems that connect to the xNF system under test. This component is
278   necessary only if the existing testing environment does not have the
279   necessary simulators.
280
281 Licensing Requirements
282 ^^^^^^^^^^^^^^^^^^^^^^^
283
284 * R-85653 The xNF **MUST** provide metrics (e.g., number of sessions,
285   number of subscribers, number of seats, etc.) to ONAP for tracking
286   every license.
287 * R-44125 The xNF provider **MUST** agree to the process that can
288   be met by Service Provider reporting infrastructure. The Contract
289   shall define the reporting process and the available reporting tools.
290 * R-40827 The xNF provider **MUST** enumerate all of the open
291   source licenses their xNF(s) incorporate.
292 * R-97293 The xNF provider **MUST NOT** require audits of
293   Service Provider’s business.
294 * R-44569 The xNF provider **MUST NOT** require additional
295   infrastructure such as a xNF provider license server for xNF provider
296   functions and metrics.
297 * R-13613 The VNF **MUST** provide clear measurements for licensing
298   purposes to allow automated scale up/down by the management system.
299 * R-27511 The VNF provider **MUST** provide the ability to scale
300   up a VNF provider supplied product during growth and scale down a
301   VNF provider supplied product during decline without “real-time”
302   restrictions based upon VNF provider permissions.
303 * R-85991 The xNF provider **MUST** provide a universal license key
304   per xNF to be used as needed by services (i.e., not tied to a VM
305   instance) as the recommended solution. The xNF provider may provide
306   pools of Unique xNF License Keys, where there is a unique key for
307   each xNF instance as an alternate solution. Licensing issues should
308   be resolved without interrupting in-service xNFs.
309 * R-47849 The xNF provider **MUST** support the metadata about
310   licenses (and their applicable entitlements) as defined in this
311   document for xNF software, and any license keys required to authorize
312   use of the xNF software.  This metadata will be used to facilitate
313   onboarding the xNF into the ONAP environment and automating processes
314   for putting the licenses into use and managing the full lifecycle of
315   the licenses. The details of this license model are described in
316   Appendix C. Note: License metadata support in ONAP is not currently
317   available and planned for 1Q 2018.
318
319 Configuration Management
320 ---------------------------------------------------
321
322 Controller Interactions With VNF
323 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
324
325 ONAP Controllers (such as APPC) expose a northbound API to clients
326 (such as SO) in order for the clients to initiate an activity
327 (aka command) on a VNF.   ONAP controllers interact with VNFs through
328 Network and Application Adapters to perform configuration and other
329 lifecycle management activities within NFV environment.
330 The standardized models, protocols and mechanisms by which network
331 functions are configured are equally applicable to VNFs and PNFs.
332
333 This section describes the list of commands that should be supported
334 by the VNF.   The following sections describe the standard protocols
335 that are supported (NETCONF, Chef, Ansible, and REST).
336
337 The commands below are expected to be supported on all VNF’s, unless
338 noted otherwise, either directly (via the NETCONF or REST interface)
339 or indirectly (via a Chef Cookbook or Ansible server).  Note that there
340 are additional commands offered to northbound clients that are not shown
341 below, as these commands either act internally on the Controller itself
342 or depend upon network cloud components for implementation (thus, these
343 actions do not put any special requirement on the VNF provider).
344
345 The commands allow for parametric data to be passed from the controller
346 to the VNF or Ansible/Chef server in the request.  The format of the
347 parameter data can be either xml (for NETCONF) or JSON (for Ansible,
348 Chef, or REST).
349
350 Configuration Commands
351 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
352
353 **Configure**: The Controller client is requesting that a post-instantiation
354 configuration be applied to the target VNF instance. After the Configure
355 action is completed, the VNF instance should be ready for service.
356 Note that customer specific configurations may need to be applied using
357 the ConfigModify action.
358
359 **ConfigModify**: The Controller client is requesting a configuration
360 update to a subset of the total configuration parameters of a VNF or to
361 apply customer specific configurations. The configuration update is
362 typically done while the VNF is in service and should not disrupt traffic.
363
364 **ConfigBackup**: The Controller client is requesting a backup of the
365 configuration parameters where the parameters are stored on the VNF.
366 This command is typically requested as part of an orchestration flow
367 for scenarios such as a software upgrade. The ConfigBackup is typically
368 done while the VNF is not in service (i.e., in a maintenance state).
369 When the ConfigBackup command is executed, the current VNF configuration
370 parameters are saved in storage that is preserved (if there is an existing
371 set of backed up parameters, they are overwritten).
372
373 **ConfigRestore**: The Controller client is requesting a restore action of
374 the configuration parameters to the VNF that were saved by ConfigBackup
375 command. This command is typically requested as part of an orchestration
376 flow for scenarios such as a software upgrade where the software upgrade
377 may have failed and the VNF needs to be rolled back to the prior configuration.
378 When the ConfigRestore command is executed, the VNF configuration parameters
379 which were backed to persistent preserved storage are applied to the VNF
380 (replacing existing parameters). The ConfigRestore is typically done while
381 the VNF is not in service (i.e., in a maintenance state).
382
383 **ConfigScaleOut**: The Controller client is requesting that a configuration
384 be applied after the VNF instance has been scaled out (i.e., one or more
385 additional VM’s instantiated to increase capacity). For some VNF’s,
386 ConfigScaleOut is not needed because the VNF is auto-configured after
387 scale-out. This command is being introduced in the Beijing release.
388
389 **Audit**: The Controller client is requesting that the current (last known
390 configuration update) is audited against the running configuration on the VNF.
391
392 * R-20741 The xNF **MUST** support ONAP Controller’s **Configure** command.
393 * R-19366 The xNF **MUST** support ONAP Controller’s **ConfigModify** command.
394 * R-32981 The xNF **MUST** support ONAP Controller’s **ConfigBackup** command.
395 * R-48247 The xNF **MUST** support ONAP Controller’s **ConfigRestore** command.
396 * R-94084 The xNF **MUST** support ONAP Controller’s **ConfigScaleOut**
397   command.
398 * R-56385 The xNF **MUST** support ONAP Controller’s **Audit** command.
399
400 LifeCycle Management Related Commands
401 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
402
403 **The following commands are needed to support various lifecycle management
404 flows where the VNF may need to be removed for service.**
405
406 **QuiesceTraffic**: The Controller client is requesting the VNF gracefully
407 stop traffic (aka block and drain traffic). The method for quiescing traffic
408 is specific to the VNF architecture. The action is completed when all
409 (in-flight transactions) traffic has stopped.   The VNF remains in an active
410 state where the VNF is able to process traffic (initiated using the
411 StartTraffic action).
412
413 **ResumeTraffic**: The Controller client is requesting the VNF resume
414 processing traffic. The method to resume traffic is specific to the VNF
415 architecture.
416
417 **StopApplication**: The Controller client is requesting that the application
418 running on the VNF is stopped gracefully (i.e., without traffic loss).
419 This is equivalent to quiescing the traffic and then stopping the application
420 processes. The processes can be restarted using the StartApplication command.
421
422 **StartApplication**: The Controller client is requesting that the application
423 running on the VNF is started. Get ready to process traffic.
424
425 **The following commands are needed to support software upgrades, in-place or
426 other type of software upgrade. The VNF instance may be removed from service
427 for the upgrade.**
428
429 **UpgradePrecheck**: The Controller client is requesting a confirmation that
430 the VNF can (and needs to) be upgraded to a specific software version
431 (specified in the request).
432
433 **UpgradeSoftware**: The Controller client is requesting that a (in-place)
434 software upgrade be performed on the VNF.  The software to be applied is
435 pre-loaded to a specified location.
436
437 **UpgradePostCheck**: The Controller client is requesting a confirmation that
438 the VNF software upgrade has been completed successfully (VNF upgraded to
439 the new software version).
440
441 **UpgradeBackup**: The Controller client is requesting that the VNF is backed
442 up prior to the UpgradeSoftware.
443
444 **UpgradeBackOut**: The Controller client is requesting that the VNF upgrade
445 is backed out (in the event that the SoftwareUpgrade or UpgradePostCheck
446 failed).
447
448 * R-12706 The xNF **MUST** support ONAP Controller’s **QuiesceTraffic**
449   command.
450 * R-07251 The xNF **MUST** support ONAP Controller’s **ResumeTraffic**
451   command.
452 * R-83146 The xNF **MUST** support ONAP Controller’s **StopApplication**
453   command.
454 * R-82811 The xNF **MUST** support ONAP Controller’s **StartApplication**
455   command.
456 * R-19922 The xNF **MUST** support ONAP Controller’s **UpgradePrecheck**
457   command.
458 * R-49466 The xNF **MUST** support ONAP Controller’s **UpgradeSoftware**
459   command.
460 * R-45856 The xNF **MUST** support ONAP Controller’s **UpgradePostCheck**
461   command.
462 * R-97343 The xNF **MUST** support ONAP Controller’s **UpgradeBackup**
463   command.
464 * R-65641 The xNF **MUST** support ONAP Controller’s **UpgradeBackOut**
465   command.
466
467 HealthCheck and Failure Related Commands
468 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
469
470 **HealthCheck**: The Controller client is requesting a health check over the
471 entire scope of the VNF.  The VNF must be 100% healthy, ready to take requests
472 and provide services, with all VNF required capabilities ready to provide
473 services and with all active and standby resources fully ready with no open
474 MINOR, MAJOR or CRITICAL alarms.
475
476 Note: In addition to the commands above, the Controller supports a set of
477 Openstack failure recovery related commands that are executed on-demand or via
478 Control Loop at the VM level.  The VNF must support these commands in a fully
479 automated fashion.
480
481 * R-41430 The xNF **MUST** support ONAP Controller’s **HealthCheck**
482   command.
483
484 Notes On Command Support Using Controller Southbound Protocols
485 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
486
487 The ONAP Controllers are designed to support a standard set of protocols in
488 order to communicate with the VNF instance.  The supported protocols are
489 NETCONF, Ansible, Chef, and REST.
490
491 NETCONF and REST require the VNF to implement a server which supports the RPC
492 or REST calls.
493
494 Ansible and Chef require the use of a Ansible or Chef server which communicates
495 with the Controller (northbound) and the VNF VM’s (southbound).
496
497 The vendor must select which protocol to support for the commands listed above.
498 Notes:
499
500 * NETCONF is most suitable for configuration related commands
501
502 * Ansible and Chef are suitable for any command.
503   Ansible has the advantage that it is agentless.
504
505 * REST is specified as an option only for the HealthCheck.
506
507
508 Additional details can be found in the `ONAP Application Controller (APPC) API Guide <http://onap.readthedocs.io/en/latest/submodules/appc.git/docs/APPC%20API%20Guide/APPC%20API%20Guide.html>`_, `ONAP VF-C project <http://onap.readthedocs.io/en/latest/submodules/vfc/nfvo/lcm.git/docs/index.html>`_ and the `ONAP SDNC project <http://onap.readthedocs.io/en/latest/submodules/sdnc/northbound.git/docs/index.html>`_.
509
510 NETCONF Standards and Capabilities
511 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
512
513 ONAP Controllers and their Adapters utilize device YANG model and
514 NETCONF APIs to make the required changes in the VNF state and
515 configuration. The VNF providers must provide the Device YANG model and
516 NETCONF server supporting NETCONF APIs to comply with target ONAP and
517 industry standards.
518
519 VNF Configuration via NETCONF Requirements
520 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
521
522 Configuration Management
523 +++++++++++++++++++++++++++
524
525 * R-88026 The xNF **MUST** include a NETCONF server enabling
526   runtime configuration and lifecycle management capabilities.
527 * R-95950 The xNF **MUST** provide a NETCONF interface fully defined
528   by supplied YANG models for the embedded NETCONF server.
529
530 NETCONF Server Requirements
531 ++++++++++++++++++++++++++++++
532
533 * R-73468 The xNF **MUST** allow the NETCONF server connection
534   parameters to be configurable during virtual machine instantiation
535   through Heat templates where SSH keys, usernames, passwords, SSH
536   service and SSH port numbers are Heat template parameters.
537 * R-90007 The xNF **MUST** implement the protocol operation:
538   **close-session()**- Gracefully close the current session.
539 * R-70496 The xNF **MUST** implement the protocol operation:
540   **commit(confirmed, confirm-timeout)** - Commit candidate
541   configuration datastore to the running configuration.
542 * R-18733 The xNF **MUST** implement the protocol operation:
543   **discard-changes()** - Revert the candidate configuration
544   datastore to the running configuration.
545 * R-44281 The xNF **MUST** implement the protocol operation:
546   **edit-config(target, default-operation, test-option, error-option,
547   config)** - Edit the target configuration datastore by merging,
548   replacing, creating, or deleting new config elements.
549 * R-60106 The xNF **MUST** implement the protocol operation:
550   **get(filter)** - Retrieve (a filtered subset of) the running
551   configuration and device state information. This should include
552   the list of xNF supported schemas.
553 * R-29488 The xNF **MUST** implement the protocol operation:
554   **get-config(source, filter)** - Retrieve a (filtered subset of
555   a) configuration from the configuration datastore source.
556 * R-11235 The xNF **MUST** implement the protocol operation:
557   **kill-session(session)** - Force the termination of **session**.
558 * R-02597 The xNF **MUST** implement the protocol operation:
559   **lock(target)** - Lock the configuration datastore target.
560 * R-96554 The xNF **MUST** implement the protocol operation:
561   **unlock(target)** - Unlock the configuration datastore target.
562 * R-29324 The xNF **SHOULD** implement the protocol operation:
563   **copy-config(target, source) -** Copy the content of the
564   configuration datastore source to the configuration datastore target.
565 * R-88031 The xNF **SHOULD** implement the protocol operation:
566   **delete-config(target) -** Delete the named configuration
567   datastore target.
568 * R-97529 The xNF **SHOULD** implement the protocol operation:
569   **get-schema(identifier, version, format) -** Retrieve the YANG schema.
570 * R-62468 The xNF **MUST** allow all configuration data to be
571   edited through a NETCONF <edit-config> operation. Proprietary
572   NETCONF RPCs that make configuration changes are not sufficient.
573 * R-01382 The xNF **MUST** allow the entire configuration of the
574   xNF to be retrieved via NETCONF's <get-config> and <edit-config>,
575   independently of whether it was configured via NETCONF or other
576   mechanisms.
577 * R-28756 The xNF **MUST** support **:partial-lock** and
578   **:partial-unlock** capabilities, defined in RFC 5717. This
579   allows multiple independent clients to each write to a different
580   part of the <running> configuration at the same time.
581 * R-83873 The xNF **MUST** support **:rollback-on-error** value for
582   the <error-option> parameter to the <edit-config> operation. If any
583   error occurs during the requested edit operation, then the target
584   database (usually the running configuration) will be left unaffected.
585   This provides an 'all-or-nothing' edit mode for a single <edit-config>
586   request.
587 * R-68990 The xNF **MUST** support the **:startup** capability. It
588   will allow the running configuration to be copied to this special
589   database. It can also be locked and unlocked.
590 * R-68200 The xNF **MUST** support the **:url** value to specify
591   protocol operation source and target parameters. The capability URI
592   for this feature will indicate which schemes (e.g., file, https, sftp)
593   that the server supports within a particular URL value. The 'file'
594   scheme allows for editable local configuration databases. The other
595   schemes allow for remote storage of configuration databases.
596 * R-20353 The xNF **MUST** implement both **:candidate** and
597   **:writable-running** capabilities. When both **:candidate** and
598   **:writable-running** are provided then two locks should be supported.
599 * R-11499 The xNF **MUST** fully support the XPath 1.0 specification
600   for filtered retrieval of configuration and other database contents.
601   The 'type' attribute within the <filter> parameter for <get> and
602   <get-config> operations may be set to 'xpath'. The 'select' attribute
603   (which contains the XPath expression) will also be supported by the
604   server. A server may support partial XPath retrieval filtering, but
605   it cannot advertise the **:xpath** capability unless the entire XPath
606   1.0 specification is supported.
607 * R-83790 The xNF **MUST** implement the **:validate** capability
608 * R-49145 The xNF **MUST** implement **:confirmed-commit** If
609   **:candidate** is supported.
610 * R-58358 The xNF **MUST** implement the **:with-defaults** capability
611   [RFC6243].
612 * R-59610 The xNF **MUST** implement the data model discovery and
613   download as defined in [RFC6022].
614 * R-87662 The xNF **SHOULD** implement the NETCONF Event Notifications
615   [RFC5277].
616 * R-93443 The xNF **MUST** define all data models in YANG [RFC6020],
617   and the mapping to NETCONF shall follow the rules defined in this RFC.
618 * R-26115 The xNF **MUST** follow the data model upgrade rules defined
619   in [RFC6020] section 10. All deviations from section 10 rules shall
620   be handled by a built-in automatic upgrade mechanism.
621 * R-10716 The xNF **MUST** support parallel and simultaneous
622   configuration of separate objects within itself.
623 * R-29495 The xNF **MUST** support locking if a common object is
624   being manipulated by two simultaneous NETCONF configuration operations
625   on the same xNF within the context of the same writable running data
626   store (e.g., if an interface parameter is being configured then it
627   should be locked out for configuration by a simultaneous configuration
628   operation on that same interface parameter).
629 * R-53015 The xNF **MUST** apply locking based on the sequence of
630   NETCONF operations, with the first configuration operation locking
631   out all others until completed.
632 * R-02616 The xNF **MUST** permit locking at the finest granularity
633   if a xNF needs to lock an object for configuration to avoid blocking
634   simultaneous configuration operations on unrelated objects (e.g., BGP
635   configuration should not be locked out if an interface is being
636   configured or entire Interface configuration should not be locked out
637   if a non-overlapping parameter on the interface is being configured).
638 * R-41829 The xNF **MUST** be able to specify the granularity of the
639   lock via a restricted or full XPath expression.
640 * R-66793 The xNF **MUST** guarantee the xNF configuration integrity
641   for all simultaneous configuration operations (e.g., if a change is
642   attempted to the BUM filter rate from multiple interfaces on the same
643   EVC, then they need to be sequenced in the xNF without locking either
644   configuration method out).
645 * R-54190 The xNF **MUST** release locks to prevent permanent lock-outs
646   when/if a session applying the lock is terminated (e.g., SSH session
647   is terminated).
648 * R-03465 The xNF **MUST** release locks to prevent permanent lock-outs
649   when the corresponding <partial-unlock> operation succeeds.
650 * R-63935 The xNF **MUST** release locks to prevent permanent lock-outs
651   when a user configured timer has expired forcing the NETCONF SSH Session
652   termination (i.e., product must expose a configuration knob for a user
653   setting of a lock expiration timer)
654 * R-10173 The xNF **MUST** allow another NETCONF session to be able to
655   initiate the release of the lock by killing the session owning the lock,
656   using the <kill-session> operation to guard against hung NETCONF sessions.
657 * R-88899 The xNF **MUST** support simultaneous <commit> operations
658   within the context of this locking requirements framework.
659 * R-07545 The xNF **MUST** support all operations, administration and
660   management (OAM) functions available from the supplier for xNFs using
661   the supplied YANG code and associated NETCONF servers.
662 * R-60656 The xNF **MUST** support sub tree filtering.
663 * R-80898 The xNF **MUST** support heartbeat via a <get> with null filter.
664 * R-06617 The xNF **MUST** support get-schema (ietf-netconf-monitoring)
665   to pull YANG model over session.
666 * R-25238 The xNF PACKAGE **MUST** validated YANG code using the open
667   source pyang [1]_ program using the following commands:
668
669 .. code-block:: python
670
671  $ pyang --verbose --strict <YANG-file-name(s)>
672  $ echo $!
673
674 * R-63953 The xNF **MUST** have the echo command return a zero value
675   otherwise the validation has failed
676 * R-26508 The xNF **MUST** support a NETCONF server that can be mounted on
677   OpenDaylight (client) and perform the operations of: modify, update,
678   change, rollback configurations using each configuration data element,
679   query each state (non-configuration) data element, execute each YANG
680   RPC, and receive data through each notification statement.
681
682
683 The following requirements provides the Yang models that suppliers must
684 conform, and those where applicable, that suppliers need to use.
685
686 * R-28545 The xNF **MUST** conform its YANG model to RFC 6060,
687   “YANG - A Data Modeling Language for the Network Configuration
688   Protocol (NETCONF)”
689 * R-29967 The xNF **MUST** conform its YANG model to RFC 6022,
690   “YANG module for NETCONF monitoring”.
691 * R-22700 The xNF **MUST** conform its YANG model to RFC 6470,
692   “NETCONF Base Notifications”.
693 * R-10353 The xNF **MUST** conform its YANG model to RFC 6244,
694   “An Architecture for Network Management Using NETCONF and YANG”.
695 * R-53317 The xNF **MUST** conform its YANG model to RFC 6087,
696   “Guidelines for Authors and Reviewers of YANG Data Model Documents”.
697 * R-33955 The xNF **SHOULD** conform its YANG model to RFC 6991,
698   “Common YANG Data Types”.
699 * R-22946 The xNF **SHOULD** conform its YANG model to RFC 6536,
700   “NETCONF Access Control Model”.
701 * R-10129 The xNF **SHOULD** conform its YANG model to RFC 7223,
702   “A YANG Data Model for Interface Management”.
703 * R-12271 The xNF **SHOULD** conform its YANG model to RFC 7223,
704   “IANA Interface Type YANG Module”.
705 * R-49036 The xNF **SHOULD** conform its YANG model to RFC 7277,
706   “A YANG Data Model for IP Management”.
707 * R-87564 The xNF **SHOULD** conform its YANG model to RFC 7317,
708   “A YANG Data Model for System Management”.
709 * R-24269 The xNF **SHOULD** conform its YANG model to RFC 7407,
710   “A YANG Data Model for SNMP Configuration”.
711
712 The NETCONF server interface shall fully conform to the following
713 NETCONF RFCs.
714
715 * R-33946 The xNF **MUST** conform to the NETCONF RFC 4741,
716   “NETCONF Configuration Protocol”.
717 * R-04158 The xNF **MUST** conform to the NETCONF RFC 4742,
718   “Using the NETCONF Configuration Protocol over Secure Shell (SSH)”.
719 * R-13800 The xNF **MUST** conform to the NETCONF RFC 5277,
720   “NETCONF Event Notification”.
721 * R-01334 The xNF **MUST** conform to the NETCONF RFC 5717,
722   “Partial Lock Remote Procedure Call”.
723 * R-08134 The xNF **MUST** conform to the NETCONF RFC 6241,
724   “NETCONF Configuration Protocol”.
725 * R-78282 The xNF **MUST** conform to the NETCONF RFC 6242,
726   “Using the Network Configuration Protocol over Secure Shell”.
727
728 VNF REST APIs
729 ^^^^^^^^^^^^^^^
730
731 HealthCheck is a command for which no NETCONF support exists.
732 Therefore, this must be supported using a RESTful interface
733 (defined in this section) or with a Chef cookbook/Ansible playbook
734 (defined in sections `Chef Standards and Capabilities`_ and
735 `Ansible Standards and Capabilities`_).
736
737 HealthCheck Definition: The VNF level HealthCheck is a check over
738 the entire scope of the VNF. The VNF must be 100% healthy, ready
739 to take requests and provide services, with all VNF required
740 capabilities ready to provide services and with all active and
741 standby resources fully ready with no open MINOR, MAJOR or CRITICAL
742 alarms.  NOTE: A switch may need to be turned on, but the VNF should
743 be ready to take service requests or be already processing service
744 requests successfully.
745
746 The VNF must provide a REST formatted GET RPCs to support HealthCheck
747 queries via the GET method over HTTP(s).
748
749 The port number, url, and other authentication information is provided
750 by the VNF provider.
751
752 REST APIs
753 ~~~~~~~~~
754
755 * R-31809 The xNF **MUST** support the HealthCheck RPC. The HealthCheck
756   RPC executes a xNF Provider-defined xNF HealthCheck over the scope of
757   the entire xNF (e.g., if there are multiple VNFCs, then run a health check,
758   as appropriate, for all VNFCs). It returns a 200 OK if the test completes.
759   A JSON object is returned indicating state (healthy, unhealthy), scope
760   identifier, time-stamp and one or more blocks containing info and fault
761   information. If the xNF is unable to run the HealthCheck, return a
762   standard http error code and message.
763
764 Examples of responses when HealthCheck runs and is able to provide a healthy
765 or unhealthy response:
766
767 .. code-block:: java
768
769  {
770    "identifier": "scope represented",
771    "state": "healthy",
772    "time": "01-01-1000:0000"
773  }
774
775  {
776    "identifier": "scope represented",
777    "state": "unhealthy",
778     {[
779    "info": "System threshold exceeded details",
780    "fault":
781      {
782        "cpuOverall": 0.80,
783        "cpuThreshold": 0.45
784      }
785      ]},
786    "time": "01-01-1000:0000"
787  }
788
789
790 Chef Standards and Capabilities
791 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
792
793 ONAP will support configuration of VNFs via Chef subject to the
794 requirements and guidelines defined in this section.
795
796 The Chef configuration management mechanism follows a client-server
797 model. It requires the presence of a Chef-Client on the VNF that will be
798 directly managed by a Chef Server. The Chef-client will register with
799 the appropriate Chef Server and are managed via ‘cookbooks’ and
800 configuration attributes loaded on the Chef Server which contain all
801 necessary information to execute the appropriate actions on the VNF via
802 the Chef-client.
803
804 ONAP will utilize the open source Chef Server, invoke the documented
805 Chef REST APIs to manage the VNF and requires the use of open source
806 Chef-Client and Push Jobs Client on the VNF
807 (https://downloads.chef.io/).
808
809 VNF Configuration via Chef Requirements
810 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
811
812 Chef Client Requirements
813 +++++++++++++++++++++++++
814
815 * R-79224 The xNF **MUST** have the chef-client be preloaded with
816   validator keys and configuration to register with the designated
817   Chef Server as part of the installation process.
818 * R-72184 The xNF **MUST** have routable FQDNs for all the endpoints
819   (VMs) of a xNF that contain chef-clients which are used to register
820   with the Chef Server.  As part of invoking xNF actions, ONAP will
821   trigger push jobs against FQDNs of endpoints for a xNF, if required.
822 * R-47068 The xNF **MAY** expose a single endpoint that is
823   responsible for all functionality.
824 * R-67114 The xNF **MUST** be installed with Chef-Client >= 12.0 and
825   Chef push jobs client >= 2.0.
826
827 Chef Roles/Requirements
828 ++++++++++++++++++++++++++
829
830 * R-27310 The xNF Package **MUST** include all relevant Chef artifacts
831   (roles/cookbooks/recipes) required to execute xNF actions requested by
832   ONAP for loading on appropriate Chef Server.
833 * R-26567 The xNF Package **MUST** include a run list of
834   roles/cookbooks/recipes, for each supported xNF action, that will
835   perform the desired xNF action in its entirety as specified by ONAP
836   (see Section 7.c, ONAP Controller APIs and Behavior, for list of xNF
837   actions and requirements), when triggered by a chef-client run list
838   in JSON file.
839 * R-98911 The xNF **MUST NOT** use any instance specific parameters
840   for the xNF in roles/cookbooks/recipes invoked for a xNF action.
841 * R-37929 The xNF **MUST** accept all necessary instance specific
842   data from the environment or node object attributes for the xNF
843   in roles/cookbooks/recipes invoked for a xNF action.
844 * R-62170 The xNF **MUST** over-ride any default values for
845   configurable parameters that can be set by ONAP in the roles,
846   cookbooks and recipes.
847 * R-78116 The xNF **MUST** update status on the Chef Server
848   appropriately (e.g., via a fail or raise an exception) if the
849   chef-client run encounters any critical errors/failures when
850   executing a xNF action.
851 * R-44013 The xNF **MUST** populate an attribute, defined as node
852   [‘PushJobOutput’] with the desired output on all nodes in the push job
853   that execute chef-client run if the xNF action requires the output of a
854   chef-client run be made available (e.g., get running configuration).
855 * R-30654 The xNF Package **MUST** have appropriate cookbooks that are
856   designed to automatically ‘rollback’ to the original state in case of
857   any errors for actions that change state of the xNF (e.g., configure).
858 * R-65755 The xNF **SHOULD** support callback URLs to return information
859   to ONAP upon completion of the chef-client run for any chef-client run
860   associated with a xNF action.
861
862 -  As part of the push job, ONAP will provide two parameters in the
863    environment of the push job JSON object:
864
865     -  ‘RequestId’ a unique Id to be used to identify the request,
866     -  ‘CallbackUrl’, the URL to post response back.
867
868 -  If the CallbackUrl field is empty or missing in the push job, then
869    the chef-client run need not post the results back via callback.
870
871 * R-15885 The xNF **MUST** Upon completion of the chef-client run,
872   POST back on the callback URL, a JSON object as described in Table
873   A2 if the chef-client run list includes a cookbook/recipe that is
874   callback capable. Failure to POST on the Callback Url should not be
875   considered a critical error. That is, if the chef-client successfully
876   completes the xNF action, it should reflect this status on the Chef
877   Server regardless of whether the Callback succeeded or not.
878
879 ONAP Chef API Usage
880 ~~~~~~~~~~~~~~~~~~~
881
882 This section outlines the workflow that ONAP invokes when it receives an
883 action request against a Chef managed VNF.
884
885 1. When ONAP receives a request for an action for a Chef Managed VNF, it
886    retrieves the corresponding template (based on **action** and
887    **VNF)** from its database and sets necessary values in the
888    “Environment”, “Node” and “NodeList” keys (if present) from either
889    the payload of the received action or internal data.
890
891 2. If “Environment” key is present in the updated template, it posts the
892    corresponding JSON dictionary to the appropriate Environment object
893    REST endpoint on the Chef Server thus updating the Environment
894    attributes on the Chef Server.
895
896 3. Next, it creates a Node Object from the “Node” JSON dictionary for
897    all elements listed in the NodeList (using the FQDN to construct the
898    endpoint) by replicating it  [2]_. As part of this process, it will
899    set the name field in each Node Object to the corresponding FQDN.
900    These node objects are then posted on the Chef Server to
901    corresponding Node Object REST endpoints to update the corresponding
902    node attributes.
903
904 4. If PushJobFlag is set to “True” in the template, ONAP requests a push
905    job against all the nodes in the NodeList to trigger
906    chef-client\ **.** It will not invoke any other command via the push
907    job. ONAP will include a callback URL in the push job request and a
908    unique Request Id. An example push job posted by ONAP is listed
909    below:
910
911 .. code-block:: java
912
913    {
914      "command": "chef-client",
915      "run\_timeout": 300,
916      "nodes”: [“node1.vnf\_a.onap.com”, “node2.vnf\_a.onap.com”],
917        "env": {
918                 “RequestId”:”8279-abcd-aksdj-19231”,
919                 “CallbackUrl”:”<callback>”
920               },
921    }
922
923 5. If CallbackCapable field in the template is not present or set to
924    “False” ONAP will poll the Chef Server to check completion status of
925    the push job.
926
927 6. If “GetOutputFlag” is set to “True” in the template and
928    CallbackCapable is not set to “True”, ONAP will retrieve any output
929    from each node where the push job has finished by accessing the Node
930    Object attribute node[‘PushJobOutput’].
931
932 Ansible Standards and Capabilities
933 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
934
935 ONAP will support configuration of VNFs via Ansible subject to the
936 requirements and guidelines defined in this section.
937
938 Ansible allows agentless management of VNFs/VMs/VNFCs via execution
939 of ‘playbooks’ over ssh. The ‘playbooks’ are a structured set of
940 tasks which contain all the necessary resources and execution capabilities
941 to take the necessary action on one or more target VMs (and/or VNFCs)
942 of the VNF. ONAP will utilize the framework of an Ansible Server that
943 will host all Ansible artifacts and run playbooks to manage VNFs that support
944 Ansible.
945
946 VNF Configuration via Ansible Requirements
947 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
948
949 Ansible Client Requirements
950 +++++++++++++++++++++++++++++
951
952 * R-32217 The xNF **MUST** have routable FQDNs that are reachable via
953   the Ansible Server for the endpoints (VMs) of a xNF on which playbooks
954   will be executed. ONAP will initiate requests to the Ansible Server
955   for invocation of playbooks against these end points [3]_.
956 * R-54373 The xNF **MUST** have Python >= 2.6 on the endpoint VM(s)
957   of a xNF on which an Ansible playbook will be executed.
958 * R-35401 The xNF **MUST** support SSH and allow SSH access by the
959   Ansible server for the endpoint VM(s) and comply with the Network
960   Cloud Service Provider guidelines for authentication and access.
961 * R-82018 The xNF **MUST** load the Ansible Server SSH public key onto xNF
962   VM(s) as part
963   of instantiation. This will allow the Ansible Server to authenticate
964   to perform post-instantiation configuration without manual intervention
965   and without requiring specific xNF login IDs and passwords.
966
967  CAUTION: For VNFs configured using Ansible, to eliminate the need
968  for manual steps, post-instantiation and pre-configuration, to upload
969  of SSH public keys, SSH public keys loaded during (heat) instantiation shall
970  be preserved and not removed by (heat) embedded (userdata) scripts.
971
972 * R-92866 The xNF **MUST** include as part of post-instantiation configuration
973   done by Ansible Playbooks the removal/update of the SSH public key from
974   /root/.ssh/authorized_keys, and  update of SSH keys loaded through
975   instantiation to support Ansible. This may include download and install of
976   new SSH keys and new mechanized IDs.
977 * R-91745 The xNF **MUST** update the Ansible Server and other entities
978   storing and using the SSH keys for authentication when the SSH keys used
979   by Ansible are regenerated/updated.
980
981   NOTE: Ansible Server itself may be used to upload new SSH public keys
982   onto supported VNFs.
983
984 Ansible Playbook Requirements
985 +++++++++++++++++++++++++++++++
986
987 An Ansible playbook is a collection of tasks that is executed on the
988 Ansible server (local host) and/or the target VM (s) in order to
989 complete the desired action.
990
991 * R-40293 The xNF **MUST** make available playbooks that conform
992   to the ONAP requirement.
993 * R-49396 The xNF **MUST** support each ONAP (APPC) xNF action
994   by invocation of **one** playbook [4]_. The playbook will be responsible
995   for executing
996   all necessary tasks (as well as calling other playbooks) to complete
997   the request.
998 * R-33280 The xNF **MUST NOT** use any instance specific parameters
999   in a playbook.
1000 * R-48698 The xNF **MUST** utilize information from key value pairs
1001   that will be provided by the Ansible Server as "extra-vars" during
1002   invocation to execute the desired xNF action. If the playbook requires
1003   files, they must also be supplied using the methodology detailed in
1004   the Ansible Server API, unless they are bundled with playbooks, example,
1005   generic templates.
1006
1007 The Ansible Server will determine if a playbook invoked to execute a
1008 xNF action finished successfully or not using the “PLAY_RECAP” summary
1009 in Ansible log.  The playbook will be considered to successfully finish
1010 only if the “PLAY RECAP” section at the end of playbook execution output
1011 has no unreachable hosts and no failed tasks. Otherwise, the playbook
1012 will be considered to have failed.
1013
1014 * R-43253 The xNF **MUST** use playbooks designed to allow Ansible
1015   Server to infer failure or success based on the “PLAY_RECAP” capability.
1016   NOTE: There are cases where playbooks need to interpret results of a task
1017   and then determine success or failure and return result accordingly
1018   (failure for failed tasks).
1019 * R-50252 The xNF **MUST** write to a specific one text files that
1020   will be retrieved and made available by the Ansible Server if, as part
1021   of a xNF action (e.g., audit), a playbook is required to return any
1022   xNF information. The text files must be written in the same directory as
1023   the one from which the playbook is being executed. A text file must be
1024   created for the xNF playbook run targets/affects, with the name
1025   ‘<VNFname>_results.txt’ into which any desired output from each
1026   respective VM/xNF must be written.
1027 * R-51442 The xNF **SHOULD** use playbooks that are designed to
1028   automatically ‘rollback’ to the original state in case of any errors
1029   for actions that change state of the xNF (e.g., configure).
1030
1031  NOTE: In case rollback at the playbook level is not supported or possible,
1032  the xNF provider shall provide alternative locking mechanism (e.g., for a
1033  small xNF the rollback mechanism may rely on workflow to terminate and
1034  re-instantiate VNF VMs and then re-run playbook(s)). Backing up updated
1035  files also recommended to support rollback when soft rollback is feasible.
1036
1037 * R-58301 The xNF **SHOULD NOT** use playbooks that make requests to
1038   Cloud resources e.g. Openstack (nova, neutron, glance, heat, etc.);
1039   therefore, there is no use for Cloud specific variables like Openstack
1040   UUIDs in Ansible Playbooks.
1041
1042  Rationale: Flows that require interactions with Cloud services
1043  e.g. Openstack shall rely on workflows run by an Orchestrator
1044  (Change Management) or
1045  other capability (such as a control loop or Operations GUI) outside
1046  Ansible Server which can be executed by a Controller such as APPC.
1047  There are policies, as part of Control Loop models, that send remediation
1048  action requests to APPC; these are triggered as a response to an event
1049  or correlated events published to Event Bus.
1050
1051 * R-02651 The xNF **SHOULD** use the Ansible backup feature to save a
1052   copy of configuration files before implementing changes to support
1053   operations such as backing out of software upgrades, configuration
1054   changes or other work as this will help backing out of configuration
1055   changes when needed.
1056 * R-43353 The xNF **MUST** return control from Ansible Playbooks only
1057   after tasks are fully complete, signaling that the playbook completed
1058   all tasks. When starting services, return control only after all services
1059   are up. This is critical for workflows where the next steps are dependent
1060   on prior tasks being fully completed.
1061
1062  Detailed examples:
1063
1064  StopApplication Playbook – StopApplication Playbook shall return control
1065  and a completion status only after VNF application is fully stopped, all
1066  processes/services stopped.
1067  StartApplication Playbook – StartApplication Playbook shall return control
1068  and a completion status only after all VNF application services are fully up,
1069  all processes/services started and ready to provide services. NOTE: Start
1070  Playbook should not be declared complete/done after starting one or several
1071  processes that start the other processes.
1072
1073  HealthCheck Playbook:
1074
1075  SUCCESS – HealthCheck success shall be returned (return code 0) by a
1076  Playbook or Cookbook only when VNF is 100% healthy, ready to take requests
1077  and provide services, with all VNF required capabilities ready to provide
1078  services and with all active and standby resources fully ready with no
1079  open MINOR, MAJOR or CRITICAL alarms.
1080
1081  NOTE: In some cases, a switch may need to be turned on, but a VNF
1082  reported as healthy, should be ready to take service requests or be
1083  already processing service requests successfully.
1084
1085  A successful execution of a health-check playbook shall also create one
1086  file per VNF VM, named after the VNF instance name followed by
1087  “_results.txt (<vnf_instance>_results.txt) to indicate health-check was
1088  executed and completed successfully, example: vfdb9904v_results.txt,
1089  with the following contents:
1090
1091 .. code-block:: java
1092
1093   {
1094    "identifier": "VNF",
1095    "state": "healthy",
1096    "time": "2018-03-16:1139"
1097   }
1098
1099 Example:
1100
1101 .. code-block:: java
1102
1103   $ cat vfdb9904v_results.txt
1104   {
1105    "identifier": "VNF",
1106    "state": "healthy",
1107    "time": "2018-03-16:1139"
1108   }
1109 ..
1110
1111  FAILURE – A health check playbook shall return a non-zero return code in
1112  case VNF is not 100% healthy because one or more VNF application processes
1113  are stopped or not ready to take service requests or because critical or
1114  non-critical resources are not ready or because there are open MINOR, MAJOR
1115  or CRITICAL traps/alarms or because there are issues with the VNF that
1116  need attention even if they do not impact services provided by the VNF.
1117
1118  A failed health-check playbook shall also create one file per VNF,
1119  named after the VNF instance name, followed by
1120  “_results.txt to indicate health-check was executed and found issues
1121  in the health of the VNF. This is to differentiate from failure to
1122  run health-check playbook or playbook tasks to verify the health of the VNF,
1123  example: vfdb9904v_results.txt, with the following contents:
1124
1125 .. code-block:: java
1126
1127  {
1128   "identifier": "VNF",
1129   "state": "unhealthy",
1130   "info": "Error in following VM(s). Check hcstatus files
1131   under /tmp/ccfx9901v for details",
1132   "fault": [
1133     "vfdb9904vm001",
1134     "vfdb9904vm002"
1135   ],
1136   "time": "2018-03-16:4044"
1137  }
1138 ..
1139
1140  Example:
1141
1142 .. code-block:: java
1143
1144  $ cat vfdb9904v_results.txt
1145  {
1146   "identifier": "VNF",
1147   "state": "unhealthy",
1148   "info": "Error in following VM(s). Check hcstatus files
1149   under /tmp/ccfx9901v for details",
1150   "fault": [
1151     "vfdb9904vm001",
1152     "vfdb9904vm002"
1153   ],
1154   "time": "2018-03-16:4044"
1155  }
1156 ..
1157
1158  See `VNF REST APIs`_ for additional details on HealthCheck.
1159
1160 ONAP Controller / Ansible API Usage
1161 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1162
1163 This section outlines the workflow that ONAP Controller invokes when
1164 it receives an action request against an Ansible managed VNF.
1165
1166  #. When ONAP Controller receives a request for an action for an
1167     AnsibleManaged VNF, it retrieves the corresponding template (based
1168     on **action** and **VNF**) from its database and sets necessary
1169     values (such as an Id, NodeList, and EnvParameters) from either
1170     information in the request or data obtained from other sources.
1171     This is referred to as the payload that is sent as a JSON object
1172     to the Ansible server.
1173  #. The ONAP Controller sends a request to the Ansible server to
1174     execute the action.
1175  #. The ONAP Controller polls the Ansible Server for result (success
1176     or failure).  The ONAP Controllers has a timeout value which is
1177     contained in the template.   If the result is not available when the
1178     timeout is reached, the ONAP Controller stops polling and returns a
1179     timeout error to the requester.   The Ansible Server continues to
1180     process the request.
1181
1182
1183 Support of Controller Commands And Southbound Protocols
1184 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1185
1186 The following table summarizes the commands and possible protocols selected.
1187 Note that the HealthCheck can also be supported via REST.
1188
1189 Table 8. ONAP Controller APIs and NETCONF Commands
1190
1191 +-------------+--------------------+--------------------+--------------------+
1192 |**Command**  |**NETCONF Support** |**Chef Support**    |**Ansible**         |
1193 +=============+====================+====================+====================+
1194 |General      |For each RPC, the   |VNF Vendor must     |VNF Vendor must     |
1195 |Comments     |appropriate RPC     |provide any         |provide an Ansible  |
1196 |             |operation is listed.|necessary roles,    |playbook to retrieve|
1197 |             |                    |cookbooks, recipes  |the running         |
1198 |             |                    |to retrieve the     |configuration from a|
1199 |             |                    |running             |VNF and place the   |
1200 |             |                    |configuration from  |output on the       |
1201 |             |                    |a VNF and place it  |Ansible server in   |
1202 |             |                    |in the respective   |a manner aligned    |
1203 |             |                    |Node Objects        |with playbook       |
1204 |             |                    |‘PushJobOutput’     |requirements listed |
1205 |             |                    |attribute of all    |in this document.   |
1206 |             |                    |nodes in NodeList   |                    |
1207 |             |                    |when triggered      |The PlaybookName    |
1208 |             |                    |by a chef-client    |must be provided    |
1209 |             |                    |run.                |in the JSON file.   |
1210 |             |                    |                    |                    |
1211 |             |                    |The JSON file for   |NodeList must list  |
1212 |             |                    |this VNF action is  |IP addresses or DNS |
1213 |             |                    |required to set     |supported FQDNs of  |
1214 |             |                    |“PushJobFlag” to    |an example VNF      |
1215 |             |                    |“True” and          |on which to         |
1216 |             |                    |“GetOutputFlag” to  |execute playbook.   |
1217 |             |                    |“True”. The “Node”  |                    |
1218 |             |                    |JSON dictionary     |                    |
1219 |             |                    |must have the run   |                    |
1220 |             |                    |list populated      |                    |
1221 |             |                    |with the necessary  |                    |
1222 |             |                    |sequence of roles,  |                    |
1223 |             |                    |cookbooks, recipes. |                    |
1224 |             |                    |                    |                    |
1225 |             |                    |The Environment     |                    |
1226 |             |                    |and Node values     |                    |
1227 |             |                    |should contain all  |                    |
1228 |             |                    |appropriate         |                    |
1229 |             |                    |configuration       |                    |
1230 |             |                    |attributes.         |                    |
1231 |             |                    |                    |                    |
1232 |             |                    |NodeList must       |                    |
1233 |             |                    |list sample FQDNs   |                    |
1234 |             |                    |that are required to|                    |
1235 |             |                    |conduct a           |                    |
1236 |             |                    |chef-client run for |                    |
1237 |             |                    |this VNF Action.    |                    |
1238 +-------------+--------------------+--------------------+--------------------+
1239 |Audit        |The <get-config> is |Supported via a     |Supported via a     |
1240 |             |used to return the  |cookbook that       |playbook that       |
1241 |             |running             |returns the running |returns the running |
1242 |             |configuration.      |configuration.      |configuration.      |
1243 +-------------+--------------------+--------------------+--------------------+
1244 |Configure,   |The <edit-config>   |Supported via a     |Supported via a     |
1245 |ModifyConfig |operation loads all |cookbook that       |playbook that       |
1246 |             |or part of a        |updates the VNF     |updates the VNF     |
1247 |             |specified data set  |configuration.      |configuration.      |
1248 |             |to the specified    |                    |                    |
1249 |             |target database. If |                    |                    |
1250 |             |there is no         |                    |                    |
1251 |             |<candidate/>        |                    |                    |
1252 |             |database, then the  |                    |                    |
1253 |             |target is the       |                    |                    |
1254 |             |<running/> database.|                    |                    |
1255 |             |A <commit> follows. |                    |                    |
1256 +-------------+--------------------+--------------------+--------------------+
1257 |Other        |This command has no |Supported via a     |Supported via a     |
1258 |Configuration|existing NETCONF RPC|cookbook that       |playbook that       |
1259 |Commands     |action.             |performs            |performs            |
1260 |             |                    |the action.         |the action.         |
1261 +-------------+--------------------+--------------------+--------------------+
1262 |Lifecycle    |This command has no |Supported via a     |Supported via a     |
1263 |Management   |existing NETCONF RPC|cookbook that       |playbook that       |
1264 |Commands     |action.             |performs            |performs            |
1265 |             |                    |the action.         |the action.         |
1266 +-------------+--------------------+--------------------+--------------------+
1267 |Health Check |This command has no |Supported via a     |Supported           |
1268 |             |existing NETCONF RPC|cookbook            |via a               |
1269 |             |action.             |that                |playbook            |
1270 |             |                    |performs            |that                |
1271 |             |                    |a HealthCheck and   |performs            |
1272 |             |                    |returns the results.|the                 |
1273 |             |                    |                    |HealthCheck         |
1274 |             |                    |                    |and returns         |
1275 |             |                    |                    |the                 |
1276 |             |                    |                    |results.            |
1277 +-------------+--------------------+--------------------+--------------------+
1278
1279 Monitoring & Management
1280 --------------------------------------------------
1281
1282 This section addresses data collection and event processing
1283 functionality that is directly dependent on the interfaces
1284 provided by the VNFs’ APIs. These can be in the form of asynchronous
1285 interfaces for event, fault notifications, and autonomous data streams.
1286 They can also be synchronous interfaces for on-demand requests to
1287 retrieve various performance, usage, and other event information.
1288
1289 The target direction for VNF interfaces is to employ APIs that are
1290 implemented utilizing standardized messaging and modeling protocols
1291 over standardized transports. Migrating to a virtualized environment
1292 presents a tremendous opportunity to eliminate the need for proprietary
1293 interfaces for VNF provider equipment while removing the traditional
1294 boundaries between Network Management Systems and Element Management
1295 Systems. Additionally, VNFs provide the ability to instrument the
1296 networking applications by creating event records to test and monitor
1297 end-to-end data flow through the network, similar to what physical or
1298 virtual probes provide without the need to insert probes at various
1299 points in the network. The VNF providers must be able to provide the
1300 aforementioned set of required data directly to the ONAP collection
1301 layer using standardized interfaces.
1302
1303 Data Model for Event Records
1304 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1305
1306 This section describes the data model for the collection of telemetry
1307 data from VNFs by Service Providers (SPs) to manage VNF health and
1308 runtime lifecycle. This data model is referred to as the VNF Event
1309 Streaming (VES) specifications. While this document is focused on
1310 specifying some of the records from the ONAP perspective, there may
1311 be other external bodies using the same framework to specify additional
1312 records. For example, OPNFV has a VES project that is looking to specify
1313 records for OpenStack’s internal telemetry to manage Application (VNFs),
1314 physical and virtual infrastructure (compute, storage, network devices),
1315 and virtual infrastructure managers (cloud controllers, SDN controllers).
1316 Note that any configurable parameters for these data records (e.g.,
1317 frequency, granularity, policy-based configuration) will be managed
1318 using the “Configuration” framework described in the prior sections
1319 of this document.
1320
1321 The Data Model consists of:
1322
1323 -  Common Header Record: This data structure precedes each of the
1324    Technology Independent and Technology Specific records sections of
1325    the data model.
1326
1327 -  Technology Independent Records: This version of the document
1328    specifies the model for Fault, Heartbeat, State Change, Syslog,
1329    Threshold Crossing Alerts, and VNF Scaling* (short for
1330    measurementForVfScalingFields – actual name used in JSON
1331    specification) records. In the future, these may be extended to
1332    support other types of technology independent records. Each of
1333    these records allows additional fields (name/ value pairs) for
1334    extensibility. The VNF provider can use these VNF Provider-specific
1335    additional fields to provide additional information that may be
1336    relevant to the managing systems.
1337
1338 -  Technology Specific Records: This version of the document specifies
1339    the model for Mobile Flow records, Signaling and Voice Quality records.
1340    In the future, these may be extended to support other types of records
1341    (e.g. Network Fabric, Security records, etc.). Each of these records
1342    allows additional fields (name/value pairs) for extensibility. The VNF
1343    providers can use these VNF-specific additional fields to provide
1344    additional information that may be relevant to the managing systems.
1345    A placeholder for additional technology specific areas of interest to
1346    be defined in the future documents has been depicted.
1347
1348 |image0|
1349
1350 Figure 1. Data Model for Event Records
1351
1352 Event Records - Data Structure Description
1353 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1354
1355 The data structure for event records consists of:
1356
1357 -  a Common Event Header block;
1358
1359 -  zero or more technology independent domain blocks; and
1360
1361    -  e.g., Fault domain, State Change domain, Syslog domain, etc.
1362
1363 -  zero or more technology specific domain blocks.
1364
1365    -  e.g., Mobile Flow domain, Signaling domain, Voice Quality domain,
1366       etc.
1367
1368 Common Event Header
1369 ~~~~~~~~~~~~~~~~~~~~~
1370
1371 The common header that precedes any of the domain-specific records contains
1372 information identifying the type of record to follow, information about
1373 the sender and other identifying characteristics related to timestamp,
1374 sequence number, etc.
1375
1376 Technology Independent Records – Fault Fields
1377 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1378
1379 The Fault Record, describing a condition in the Fault domain, contains
1380 information about the fault such as the entity under fault, the
1381 severity, resulting status, etc.
1382
1383 Technology Independent Records – Heartbeat Fields
1384 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1385
1386 The Heartbeat Record provides an optional structure for communicating
1387 information about heartbeat or watchdog signaling events.  It can
1388 contain information about service intervals, status information etc.
1389 as required by the heartbeat implementation.
1390
1391 Note: Heartbeat records would only have the Common Event Header block.
1392 An optional heartbeat domain is available if required by the heartbeat
1393 implementation.
1394
1395 Technology Independent Records – State Change Fields
1396 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1397
1398 The State Change Record provides a structure for communicating information
1399 about data flow through the VNF. It can contain information about state
1400 change related to physical device that is reported by VNF. As an example,
1401 when cards or port name of the entity that has changed state.
1402
1403 Technology Independent Records – Syslog Fields
1404 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1405
1406 The Syslog Record provides a structure for communicating any type of
1407 information that may be logged by the VNF. It can contain information
1408 about system internal events, status, errors, etc.
1409
1410 Technology Independent Records – Threshold Crossing Alert Fields
1411 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1412
1413 The Threshold Crossing Alert (TCA) Record provides a structure for
1414 communicating information about threshold crossing alerts. It can
1415 contain alert definitions and types, actions, events, timestamps
1416 and physical or logical details.
1417
1418 Technology Independent Records - VNF Scaling Fields
1419 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1420
1421 The VNF Scaling\* (short for measurementForVfScalingFields –
1422 actual name used in JSON specification) Record contains information
1423 about VNF and VNF resource structure and its condition to help in
1424 the management of the resources for purposes of elastic scaling.
1425
1426 Technology Independent Records – otherFields
1427 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1428
1429 The otherFields Record defines fields for events belonging to the
1430 otherFields domain of the Technology Independent domain enumeration.
1431 This record provides a mechanism to convey a complex set of fields
1432 (possibly nested or opaque) and is purely intended to address
1433 miscellaneous needs such as addressing time-to-market considerations
1434 or other proof-of-concept evaluations. Hence, use of this record
1435 type is discouraged and should be minimized.
1436
1437 Technology Specific Records – Mobile Flow Fields
1438 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1439
1440 The Mobile Flow Record provides a structure for communicating
1441 information about data flow through the VNF. It can contain
1442 information about connectivity and data flows between serving
1443 elements for mobile service, such as between LTE reference points, etc.
1444
1445 Technology Specific Records – Signaling Fields
1446 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1447
1448 The Signaling Record provides a structure for communicating information
1449 about signaling messages, parameters and signaling state.  It can
1450 contain information about data flows for signaling and controlling
1451 multimedia communication sessions such as voice and video calls.
1452
1453 Technology Specific Records – Voice Quality Fields
1454 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1455 The Voice Quality Record provides a structure for communicating information
1456 about voice quality statistics including media connection information,
1457 such as transmitted octet and packet counts, packet loss, packet delay
1458 variation, round-trip delay, QoS parameters and codec selection.
1459
1460 Technology Specific Records – Future Domains
1461 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1462
1463 The futureDomains Record is a placeholder for additional technology
1464 specific areas of interest that will be defined and described
1465 in the future documents.
1466
1467 Data Structure Specification of the Event Record
1468 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1469
1470 For additional information on the event record formats of the data
1471 structures mentioned above, please refer to `VES Event
1472 Listener <https://github.com/att/evel-test-collector/tree/master/docs/att_interface_definition>`__.
1473
1474 Transports and Protocols Supporting Resource Interfaces
1475 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1476
1477 Delivery of data from VNFs to ONAP must use the common transport
1478 mechanisms and protocols for all VNFs as defined in this document.
1479 Transport mechanisms and protocols have been selected to enable both
1480 high volume and moderate volume datasets, as well as asynchronous and
1481 synchronous communications over secure connections. The specified
1482 encoding provides self-documenting content, so data fields can be
1483 changed as needs evolve, while minimizing changes to data delivery.
1484
1485 The term ‘Event Record’ is used throughout this document to represent
1486 various forms of telemetry or instrumentation made available by the
1487 VNF including, faults, status events, various other types of VNF
1488 measurements and logs. Headers received by themselves must be used
1489 as heartbeat indicators. Common structures and delivery protocols for
1490 other types of data will be given in future versions of this document
1491 as we get more insight into data volumes and required processing.
1492
1493 In the following sections, we provide options for encoding, serialization
1494 and data delivery. Agreements between Service Providers and VNF providers
1495 shall determine which encoding, serialization and delivery method to use
1496 for particular data sets. The selected methods must be agreed to prior to
1497 the on-boarding of the VNF into ONAP design studio.
1498
1499 VNF Telemetry using VES/JSON Model
1500 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1501
1502 The preferred model for data delivery from a VNF to ONAP DCAE is
1503 the JSON driven model as depicted in Figure 2.
1504
1505 |image1|
1506
1507 Figure 2. VES/JSON Driven Model
1508
1509 VNF providers will provide a YAML artifact to the Service Provider
1510 that describes:
1511
1512 * standard VES/JSON model information elements (key/values) that
1513   the VNF provides
1514 * any additional non-standard (custom) VES/JSON model information
1515   elements (key/values) that the VNF provides
1516
1517 Using the semantics and syntax supported by YAML, VNF providers
1518 will indicate specific conditions that may arise, and recommend
1519 actions that should be taken at specific thresholds, or if specific
1520 conditions repeat within a specified time interval.
1521
1522 Based on the VNF provider's recommendations, the Service Provider may
1523 create additional YAML artifacts (using ONAP design Studio), which
1524 finalizes Service Provider engineering rules for the processing of
1525 the VNF events.  The Service Provider may alter the threshold levels
1526 recommended by the VNF providor, and may modify and more clearly
1527 specify actions that should be taken when specified conditions arise.
1528 The Service Provider-created version of the YAML artifact will be
1529 distributed to ONAP applications by the Design framework.
1530
1531 VNF Telemetry using YANG Model
1532 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1533
1534 In addition to the JSON driven model described above, a YANG
1535 driven model can also be supported, as depicted in Figure 3.
1536
1537 |image2|
1538
1539 Figure 3. YANG Driven Model
1540
1541 VNF providers will provide to the Service Provider the following
1542 YANG model artifacts:
1543
1544 * common IETF YANG modules that support the VNF
1545 * native (VNF provider-supplied) YANG modules that support the VNF
1546 * open (OpenConfig) YANG modules and the following
1547   configuration-related information, including:
1548
1549   * telemetry configuration and operational state data; such as:
1550
1551     * sensor paths
1552     * subscription bindings
1553     * path destinations
1554     * delivery frequency
1555     * transport mechanisms
1556     * data encodings
1557
1558 * a YAML artifact that provides all necessary mapping relationships
1559   between YANG model data types to VES/JSON information elements
1560 * YANG helper or decoder functions that automate the conversion between
1561   YANG model data types to VES/JSON information elements
1562 * OPTIONAL: YANG Telemetry modules in JSON format per RFC 7951
1563
1564 Using the semantics and syntax supported by YANG, VNF providers
1565 will indicate specific conditions that may arise, and recommend
1566 actions that should be taken at specific thresholds, or if specific
1567 conditions repeat within a specified time interval.
1568
1569 Based on the VNF provider's recommendations, the Service Provider may
1570 create additional YAML artifacts (using ONAP design Studio), which
1571 finalizes Service Provider engineering rules for the processing of the
1572 VNF events.  The Service Provider may alter the threshold levels recommended
1573 by the VNF provider, and may modify and more clearly specify actions that
1574 should be taken when specified conditions arise.  The Service
1575 Provided-created version of the YAML will be distributed to ONAP
1576 applications by the Design framework.
1577
1578 Note: While supporting the YANG model described above, we are still
1579 leveraging the VES JSON based model in DCAE.  The purpose of the
1580 diagram above is to illustrate the concept only and not to imply a
1581 specific implementation.
1582
1583 VNF Telemetry using Google Protocol Buffers
1584 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1585
1586 In addition to the data delivery models described above, support for
1587 delivery of VNF telemetry using Google Protocol Buffers (GPB) can
1588 also be supported, as depicted in Figure 4.
1589
1590 VNF providers will provide to the Service Provider the additional
1591 following artifacts to support the delivery of VNF telemetry to DCAE
1592 via the open-source gRPC mechanism using Google's Protocol Buffers:
1593
1594 * the YANG model artifacts described in support of the
1595   "VNF Telemetry using YANG Model"
1596 * valid definition file(s) for all GPB / KV-GPB encoded messages
1597 * valid definition file(s) for all gRPC services
1598 * gRPC method parameters and return types specified as Protocol
1599   Buffers messages
1600
1601 |image3|
1602
1603 Figure 4. Protocol Buffers Driven Model
1604
1605 Note: if Google Protocol Buffers are employed for delivery of VNF
1606 telemetry, Key-Value Google Protocol Buffers (KV-GPB) is the
1607 preferred serialization method.  Details of specifications and
1608 versioning corresponding to a release can be found at:
1609 `VES Event Listener <https://github.com/att/evel-test-collector/tree/master/docs/att_interface_definition>`__.
1610
1611 Note: While supporting the VNF telemetry delivery approach described above,
1612 we are still leveraging the VES JSON based model in DCAE.  The purpose of
1613 the diagram above is to illustrate the concept only and not to imply a
1614 specific implementation.
1615
1616 Monitoring & Management Requirements
1617 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1618
1619 VNF telemetry via standardized interface
1620 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1621
1622 * R-51910 The xNF **MUST** provide all telemetry (e.g., fault event
1623   records, syslog records, performance records etc.) to ONAP using the
1624   model, format and mechanisms described in this section.
1625
1626 Encoding and Serialization
1627 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
1628
1629 Content delivered from VNFs to ONAP is to be encoded and serialized using JSON:
1630
1631 JSON
1632 ~~~~~~~~~~~~~~~~~~
1633
1634 * R-19624 The xNF **MUST** encode and serialize content delivered to
1635   ONAP using JSON (RFC 7159) plain text format. High-volume data
1636   is to be encoded and serialized using `Avro <http://avro.apache.org/>`_, where the Avro [5]_ data format are described using JSON.
1637
1638   Note:
1639
1640   - JSON plain text format is preferred for moderate volume data sets
1641     (option 1), as JSON has the advantage of having well-understood simple
1642     processing and being human-readable without additional decoding. Examples
1643     of moderate volume data sets include the fault alarms and performance
1644     alerts, heartbeat messages, measurements used for xNF scaling and syslogs.
1645   - Binary format using Avro is preferred for high volume data sets
1646     (option 2) such as mobility flow measurements and other high-volume
1647     streaming events (such as mobility signaling events or SIP signaling)
1648     or bulk data, as this will significantly reduce the volume of data
1649     to be transmitted. As of the date of this document, all events are
1650     reported using plain text JSON and REST.
1651   - Avro content is self-documented, using a JSON schema. The JSON schema is
1652     delivered along with the data content
1653     (http://avro.apache.org/docs/current/ ). This means the presence and
1654     position of data fields can be recognized automatically, as well as the
1655     data format, definition and other attributes. Avro content can be
1656     serialized as JSON tagged text or as binary. In binary format, the
1657     JSON schema is included as a separate data block, so the content is
1658     not tagged, further compressing the volume. For streaming data, Avro
1659     will read the schema when the stream is established and apply the
1660     schema to the received content.
1661
1662 In addition to the preferred method (JSON), content can be delivered
1663 from xNFs to ONAP can be encoded and serialized using Google Protocol
1664 Buffers (GPB).
1665
1666 KV-GPB/GPB
1667 ~~~~~~~~~~~~~~~~~~
1668
1669 Telemetry data delivered using Google Protocol Buffers v3 (proto3)
1670 can be serialized in one of the following methods:
1671
1672 * Key-value Google Protocol Buffers (KV-GPB) is also known as
1673   self-describing GPB:
1674
1675   * keys are strings that correspond to the path of the system
1676     resources for the VNF being monitored.
1677   * values correspond to integers or strings that identify the
1678     operational state of the VNF resource, such a statistics counters
1679     and the state of a VNF resource.
1680
1681 * VNF providers must supply valid KV-GPB definition file(s) to allow
1682   for the decoding of all KV-GPB encoded telemetry messages.
1683
1684 * Native Google Protocol Buffers (GPB) is also known as compact GPB:
1685
1686   * keys are represented as integers pointing to the system resources for
1687     the VNF being monitored.
1688   * values correspond to integers or strings that identify the operational
1689     state of the VNF resource, such a statistics counters and the state
1690     of a VNF resource.
1691
1692 * Google Protocol Buffers (GPB) requires metadata in the form of .proto
1693   files. VNF providers must supply the necessary GPB .proto files such that
1694   GPB telemetry messages can be encoded and decoded.
1695
1696 * In the future, we may consider support for other types of
1697   encoding & serialization methods based on industry demand.
1698
1699
1700 Reporting Frequency
1701 ~~~~~~~~~~~~~~~~~~~~~
1702
1703 * R-98191 The xNF **MUST** vary the frequency that asynchronous data
1704   is delivered based on the content and how data may be aggregated or
1705   grouped together.
1706
1707   Note:
1708
1709   - For example, alarms and alerts are expected to be delivered as
1710     soon as they appear. In contrast, other content, such as
1711     performance measurements, KPIs or reported network signaling may have
1712     various ways of packaging and delivering content. Some content should
1713     be streamed immediately; or content may be monitored over a time interval,
1714     then packaged as collection of records and delivered as block; or data
1715     may be collected until a package of a certain size has been collected;
1716     or content may be summarized statistically over a time interval, or
1717     computed as a KPI, with the summary or KPI being delivered.
1718   - We expect the reporting frequency to be configurable depending
1719     on the virtual network function’s needs for management. For example,
1720     Service Provider may choose to vary the frequency of collection between
1721     normal and trouble-shooting scenarios.
1722   - Decisions about the frequency of data reporting will affect the
1723     size of delivered data sets, recommended delivery method, and how the
1724     data will be interpreted by ONAP. These considerations should not
1725     affect deserialization and decoding of the data, which will be guided
1726     by the accompanying JSON schema or GPB definition files.
1727
1728 Addressing and Delivery Protocol
1729 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1730
1731 ONAP destinations can be addressed by URLs for RESTful data PUT. Future
1732 data sets may also be addressed by host name and port number for TCP
1733 streaming, or by host name and landing zone directory for SFTP transfer
1734 of bulk files.
1735
1736 * R-88482 The xNF **SHOULD** use REST using HTTPS delivery of plain
1737   text JSON for moderate sized asynchronous data sets, and for high
1738   volume data sets when feasible.
1739 * R-84879 The xNF **MUST** have the capability of maintaining a primary
1740   and backup DNS name (URL) for connecting to ONAP collectors, with the
1741   ability to switch between addresses based on conditions defined by policy
1742   such as time-outs, and buffering to store messages until they can be
1743   delivered. At its discretion, the service provider may choose to populate
1744   only one collector address for a xNF. In this case, the network will
1745   promptly resolve connectivity problems caused by a collector or network
1746   failure transparently to the xNF.
1747 * R-81777 The xNF **MUST** be configured with initial address(es) to use
1748   at deployment time. Subsequently, address(es) may be changed through
1749   ONAP-defined policies delivered from ONAP to the xNF using PUTs to a
1750   RESTful API, in the same manner that other controls over data reporting
1751   will be controlled by policy.
1752 * R-08312 The xNF **MAY** use another option which is expected to include REST
1753   delivery of binary encoded data sets.
1754 * R-79412 The xNF **MAY** use another option which is expected to include TCP
1755   for high volume streaming asynchronous data sets and for other high volume
1756   data sets. TCP delivery can be used for either JSON or binary encoded data
1757   sets.
1758 * R-01033 The xNF **MAY** use another option which is expected to include SFTP
1759   for asynchronous bulk files, such as bulk files that contain large volumes of
1760   data collected over a long time interval or data collected across many xNFs.
1761   (Preferred is to reorganize the data into more frequent or more focused data
1762   sets, and deliver these by REST or TCP as appropriate.)
1763 * R-63229 The xNF **MAY** use another option which is expected to include REST
1764   for synchronous data, using RESTCONF (e.g., for xNF state polling).
1765 * R-03070 The xNF **MUST**, by ONAP Policy, provide the ONAP addresses
1766   as data destinations for each xNF, and may be changed by Policy while
1767   the xNF is in operation. We expect the xNF to be capable of redirecting
1768   traffic to changed destinations with no loss of data, for example from
1769   one REST URL to another, or from one TCP host and port to another.
1770
1771 Asynchronous and Synchronous Data Delivery
1772 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1773
1774 * R-06924 The xNF **MUST** deliver asynchronous data as data becomes
1775   available, or according to the configured frequency.
1776 * R-73285 The xNF **MUST** must encode, address and deliver the data
1777   as described in the previous paragraphs.
1778 * R-42140 The xNF **MUST** respond to data requests from ONAP as soon
1779   as those requests are received, as a synchronous response.
1780 * R-34660 The xNF **MUST** use the RESTCONF/NETCONF framework used by
1781   the ONAP configuration subsystem for synchronous communication.
1782 * R-86586 The xNF **MUST** use the YANG configuration models and RESTCONF
1783   [RFC8040] (https://tools.ietf.org/html/rfc8040).
1784 * R-11240 The xNF **MUST** respond with content encoded in JSON, as
1785   described in the RESTCONF specification. This way the encoding of a
1786   synchronous communication will be consistent with Avro.
1787 * R-70266 The xNF **MUST** respond to an ONAP request to deliver the
1788   current data for any of the record types defined in
1789   `Event Records - Data Structure Description`_ by returning the requested
1790   record, populated with the current field values. (Currently the defined
1791   record types include fault fields, mobile flow fields, measurements for
1792   xNF scaling fields, and syslog fields. Other record types will be added
1793   in the future as they become standardized and are made available.)
1794 * R-46290 The xNF **MUST** respond to an ONAP request to deliver granular
1795   data on device or subsystem status or performance, referencing the YANG
1796   configuration model for the xNF by returning the requested data elements.
1797 * R-43327 The xNF **SHOULD** use `Modeling JSON text with YANG
1798   <https://tools.ietf.org/html/rfc7951>`_, If YANG models need to be
1799   translated to and from JSON{RFC7951]. YANG configuration and content can
1800   be represented via JSON, consistent with Avro, as described in “Encoding
1801   and Serialization” section.
1802
1803 Security
1804 ~~~~~~~~~~
1805
1806 * R-42366 The xNF **MUST** support secure connections and transports such as
1807   Transport Layer Security (TLS) protocol
1808   [`RFC5246 <https://tools.ietf.org/html/rfc5246>`_] and should adhere to
1809   the best current practices outlined in
1810   `RFC7525 <https://tools.ietf.org/html/rfc7525>`_.
1811 * R-44290 The xNF **MUST** control access to ONAP and to xNFs, and creation
1812   of connections, through secure credentials, log-on and exchange mechanisms.
1813 * R-47597 The xNF **MUST** carry data in motion only over secure connections.
1814 * R-68165 The xNF **MUST** encrypt any content containing Sensitive Personal
1815   Information (SPI) or certain proprietary data, in addition to applying the
1816   regular procedures for securing access and delivery.
1817
1818
1819 .. [1]
1820    https://github.com/mbj4668/pyang
1821
1822 .. [2]
1823    Recall that the Node Object **is required** to be identical across
1824    all VMs of a VNF invoked as part of the action except for the “name”.
1825
1826 .. [3]
1827    Upstream elements must provide the appropriate FQDN in the request to
1828    ONAP for the desired action.
1829
1830 .. [4]
1831    Multiple ONAP actions may map to one playbook.
1832
1833 .. [5]
1834    This option is not currently supported in ONAP and it is currently
1835    under consideration.
1836
1837 .. [6]
1838    https://wiki.opnfv.org/display/PROJ/VNF+Event+Stream
1839
1840 .. |image0| image:: Data_Model_For_Event_Records.png
1841       :width: 7in
1842       :height: 8in
1843
1844
1845 .. |image1| image:: VES_JSON_Driven_Model.png
1846       :width: 5in
1847       :height: 3in
1848
1849 .. |image2| image:: YANG_Driven_Model.png
1850       :width: 5in
1851       :height: 3in
1852
1853 .. |image3| image:: Protocol_Buffers_Driven_Model.png
1854       :width: 4.74in
1855       :height: 3.3in